研究了在空气阴极微生物燃料电池中修饰方法如硝酸处理和硝酸-氨水酸碱等对XC-72R作为阴极氧还原催化剂催化活性的影响,并且使用傅里叶变换红外光谱(FTIR)、Boehm滴定法和X射线光电子能谱(谱(XPS)等手段对催化剂进行了表征。 FTIR测试证明硝酸处理可引入含氧基团氨水处理可引入含氮基团。另外,还测试了含有不同表面官能团的XC-72R对氧还原的活性,并将其作为阴极催化剂用在MFC中,测试了电池性能。实验表明,经酸碱修饰的XC-72R作为空气阴极MFC的催化剂具有很好的应用前景。
The catalytic activity of surface-modified carbon powder, Vulcan XC-72R (XC), for the oxygen reduc-tion reaction (ORR) at an air cathode in a microbial fuel cell (MFC) has been investigated. The effects of treatment with different chemicals such as nitric acid and ammonia on the chemical characteris-tics of XC were studied. The catalysts were characterized by Fourier transform infrared spectrosco-py (FTIR), Boehm titration, and X-ray photoelectron spectroscopy. FTIR analysis showed that the functional groups of the materials were changed by chemical treatment, with nitric acid causing the introduction of oxygen-containing groups, and ammonia leading to the introduction of nitro-gen-containing groups. Electrochemical measurements of MFCs containing various modified carbon materials as ORR catalysts were performed, and the results showed that chemically modified car-bon materials are promising catalysts in MFCs.
参考文献
[1] | Lefebvre, O.;Tan, Z.;Shen, Y.;Ng, H.Y..Optimization of a microbial fuel cell for wastewater treatment using recycled scrap metals as a cost-effective cathode material[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,2013:158-164. |
[2] | Ieropoulos I;Galvez A;Greenman J .[J].Enzyme and Microbial Technology,2013,52:32. |
[3] | Futamata H;Bretschger O;Cheung A;Kan J Owen R Nealson K H .[J].Journal of Bioscience and Bioengineering,2013,115:58. |
[4] | Yang, SQ;Jia, BY;Liu, H .Effects of the Pt loading side and cathode-biofilm on the performance of a membrane-less and single-chamber microbial fuel cell[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,2009(3):1197-1202. |
[5] | Yu, EH;Cheng, S;Logan, BE;Scott, K .Electrochemical reduction of oxygen with iron phthalocyanine in neutral media[J].Journal of Applied Electrochemistry,2009(5):705-711. |
[6] | Li X;Hu B;Suib S;Lei Y Li B .[J].Journal of Power Sources,2010,195:2586. |
[7] | Morris JM;Jin S;Wang JQ;Zhu CZ;Urynowicz MA .Lead dioxide as an alternative catalyst to platinum in microbial fuel cells[J].Electrochemistry communications,2007(7):1730-1734. |
[8] | Bashyam R;Zelenay P .[J].NATURE,2006,443:63. |
[9] | Zhu K N;Qin H Y;Liu B H;Li Z P .[J].Journal of Power Sources,2011,196:182. |
[10] | Rodrigues NP;Obirai J;Nyokong T;Bedioui F .Electropolymerized pyrrole-substituted manganese phthalocyanine films for the electroassisted biomimetic catalytic reduction of molecular oxygen[J].Electroanalysis,2005(2):186-190. |
[11] | Qin H Y;Liu Z X;Ye L Q;Zhu J K and Li Z P .[J].Journal of Power Sources,2009,192:385. |
[12] | Ding K Q;Cheng F M .[J].Synthetic Metals,2009,159:2122. |
[13] | Nguyen Cong H;El Abbassi K;Gautier J;Chartier P .[J].Electrochimica Acta,2005,50:1369. |
[14] | Sui S;Zhuo X L;Su K H;Yao X Y Zhang J L Du S F Kendal K .[J].J Energy Chem,2013,22:477. |
[15] | Harnisch, F;Wirth, S;Schroder, U .Effects of substrate and metabolite crossover on the cathodic oxygen reduction reaction in microbial fuel cells: Platinum vs. iron(II) phthalocyanine based electrodes[J].Electrochemistry communications,2009(11):2253-2256. |
[16] | Yuan Y;Zhou S G;Zhuang L .[J].Journal of Power Sources,2010,195:3490. |
[17] | Duteanu, N;Erable, B;Kumar, SMS;Ghangrekar, MM;Scott, K .Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,2010(14):5250-5255. |
[18] | Cheng SA;Logan BE .Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells[J].Electrochemistry communications,2007(3):492-496. |
[19] | Wang Q;Huang L P;Yu H T;Quan X Chen G H .[J].ACTA PHYSICO-CHIMICA SINICA,2013,29:889. |
[20] | Watson V J;Nieto Delgado C;Logan B .[J].Environmental Science and Technology,2013,47:6704. |
[21] | Figueiredo J L;Pereira M F R;Freitas M A;Orfao J M .[J].CARBON,1999,37:1379. |
[22] | Chen W M;Xin Q;Sun G Q;Wang Q Mao Q Su H D .[J].Journal of Power Sources,2008,180:199. |
[23] | Le Leuch L M;Bandosz T J .[J].CARBON,2007,45:568. |
[24] | Yuan Y;Zhou S G;Tang J H .[J].Environmental Science and Technology,2013,47:4911. |
[25] | Boehm H P;Diehl E;Heck W;Sappok R .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,1964,3:669. |
[26] | Mansoorian H J;Mahvi A H;Jafari A J;Amin M M Rajabizadeh A Khanjani N .[J].Enzyme and Microbial Technology,2013,52:352. |
[27] | Tricas N;Borros S .[J].KGK-KAUTSCHUK GUMMI KUNSTSTOFFE,2005,58:511. |
[28] | Kinoshita H;Nakayama T;Matsumoto N;Ohmae N .[J].CARBON,2011,49:3388. |
[29] | Plomp A J;Su D S;de Jong K P;Bitter J H .[J].J Phys Chem C,2009,113:9865. |
[30] | Jansen RJJ.;Vanbekkum H. .XPS OF NITROGEN-CONTAINING FUNCTIONAL GROUPS ON ACTIVATED CARBON[J].Carbon: An International Journal Sponsored by the American Carbon Society,1995(8):1021-1027. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%