欢迎登录材料期刊网

材料期刊网

高级检索

通过调节溶液的pH值,在水热条件下合成出长径比为2-45的La(OH)3纳米棒.对水热合成过程中间体的结构演变分析,发现高碱度有利于小尺寸晶核的形成, La(OH)3晶体结构的各向异性导致这些晶种沿着C轴方向生长,进而形成纳米棒结构.将La(OH)3纳米棒前驱体于773 K焙烧可以得到长径比为2-20的La2O2CO3纳米棒.随着长径比的增加, La2O2CO3纳米棒暴露的(110)晶面逐渐增加, La3+-O2-碱性位的数目也从0.08增加到0.24 mmol/g.因此,在Claisen-Schmidt缩合反应中, La2O2CO3纳米棒催化剂上的反应速率随着长径比的增加而逐渐增大.

La(OH)3 nanorods of 15 nm diameter and up to 700 nm long were synthesized using different pH values of the solution used in the hydrothermal synthesis. A more alkaline solution favored the formation of tiny La(OH)3 nuclei, which grew along the c-axis due to their anisotropic nature and led to the formation of rod-shaped crystals. Calcination of the La(OH)3 nanorods at 773 K gave La2O2CO3 nanorods. Their basic properties were correlated with their size. As the aspect ratio increased from 2 to 20, the basic sites increased from 0.08 to 0.24 mmol/g, which was due to a higher exposure of (110) planes. In the catalysis of the condensation reaction of benzaldehyde with acetophenone, the reaction rate was correlated with the number of La3+-O2- pairs on the exposed (110) facets of the La2O2CO3 nanorods.

参考文献

[1] 李勇;申文杰 .[J].中国科学:化学,2012,55:2485.
[2] Patzke G R;Zhou Y;Kontic R;Conrad F .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2011,50:826.
[3] Zaera F .[J].CHEMICAL SOCIETY REVIEWS,2013,42:2746.
[4] Devan R S;Patil R A;Lin J H;Ma Y R .[J].Advanced Functional Materials,2012,22:3326.
[5] 李娟,塔娜,李勇,申文杰.纳米尺度CeO2在多相催化反应中的形貌效应[J].催化学报,2008(09):823-830.
[6] 塔娜,刘景月,申文杰.基于催化应用调控氧化铈纳米材料的形貌[J].催化学报,2013(05):838-850.
[7] Xie X W;Li Y;Liu Z Q;Haruta M Shen W J .[J].NATURE,2009,458:746.
[8] Hu L H;Peng Q;Li Y D .[J].Journal of the American Chemical Society,2008,130:16136.
[9] Meng B;Zhao Z B;Wang X Z;Liang J J Qiu J S .[J].Applied Catalysis B:Environmental,2013,129:491.
[10] Choudary B M;Mulukutla R S;Klabunde K J .[J].Journal of the American Chemical Society,2003,125:2020.
[11] Zhu K K;Hu J C;Kübel C;Richards R .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2006,45:7277.
[12] Hu J C;Zhu K K;Chen L F;Kübel C Richards R .[J].J Phys Chem C,2007,111:12038.
[13] Le Van T;Che M;Kermarec M;Louis C Tatibou?t J M .[J].Catalysis Letters,1990,6:395.
[14] Lacombe S.;Mirodatos C.;Geantet C. .OXIDATIVE COUPLING OF METHANE OVER LANTHANA CATALYSTS .1. IDENTIFICATION AND ROLE OF SPECIFIC ACTIVE SITES[J].Journal of Catalysis,1995(2):439-452.
[15] Chen H Q;Yu H;Peng F;Wang H J Yang J Pan M Q .[J].Journal of Catalysis,2010,269:281.
[16] Wang H;Fang Y Z;Liu Y;Bai X .[J].Journal of Natural Gas Chemistry,2012,21:745.
[17] Wang F;Shi R J;Liu Z Q;Shang P J Pang X Y Shen S Feng Z C Li C Shen W J .[J].ACS Catal,2013,3:890.
[18] Mu Q Y;Wang Y D .[J].Journal of Alloys and Compounds,2011,509:396.
[19] Kohli P S;Kumar M;Raina K K;Singla M L .[J].J Mater Sci Mater Elec-tron,2012,23:2257.
[20] Tang B;Ge J C;Wu C J;Zhuo L H Niu J Y Chen Z Z Shi Z Q Dong Y B .[J].NANOTECHNOLOGY,2004,15:1273.
[21] Zhang N;Yi R;Zhou L B;Gao G H Shi R R Qiu G Z Liu X H .[J].Materials Chemistry and Physics,2009,114:160.
[22] Jia, G;Huang, YJ;Song, YH;Yang, M;Zhang, LH;You, HP .Controllable Synthesis and Luminescence Properties of La(OH)(3) and La(OH)(3):Tb3+ Nanocrystals with Multiform Morphologies[J].European journal of inorganic chemistry,2009(25):3721-3726.
[23] Wang Z L .[J].Journal of Physics:Condensed Matter,2004,16:R829.
[24] Xu LF;Liao Q;Zhang JP;Ai XC;Xu DS .Single-crystalline ZnO nanotube arrays on conductive glass substrates by selective disolution of electrodeposited ZnO nanorods[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2007(12):4549-4552.
[25] Lin, M.;Fu, Z.Y.;Tan, H.R.;Tan, J.P.Y.;Ng, S.C.;Teo, E. .Hydrothermal synthesis of CeO _2 nanocrystals: Ostwald ripening or oriented attachment?[J].Crystal growth & design,2012(6):3296-3303.
[26] Pileni M P .[J].J Phys Chem C,2007,111:9019.
[27] Xia T;Wang J P;Lin N;Huo L H Zhao H Mountrichas G .[J].Journal of Alloys and Compounds,2010,507:245.
[28] Wang X;Li Y D .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2002,41:4790.
[29] Zhu J X;Gui Z;Ding Y Y .[J].Materials Letters,2008,62:2373.
[30] Cornaglia L M;Múnera J;Irusta S;Lombardo E A .[J].Applied Catalysis A:General,2004,263:91.
[31] Shen SC;Chen XY;Kawi S .CO2 adsorption over Si-MCM-41 materials having basic sites created by postmodification with La2O3[J].Langmuir: The ACS Journal of Surfaces and Colloids,2004(21):9130-9137.
[32] Di Cosimo JI.;Xu M.;Iglesia E.;Apesteguia CR.;Diez VK. .Structure and surface and catalytic properties of Mg-Al basic oxides[J].Journal of Catalysis,1998(2):499-510.
[33] Manoilova O V;Podkolzin S G;Tope B;Lercher J Stangland E E Goupil J M Weckhuysen B M .[J].Journal of Physical Chemistry B,2004,108:15770.
[34] Choudary B M;Kantam M L;Ranganath K V S;Mahendar K Sreedhar B .[J].Journal of the American Chemical Society,2004,126:3396.
[35] Climent M J;Corma A;Iborra S;Mifsud M .[J].Journal of Catalysis,2007,247:223.
[36] Drexler M T;Amiridis M D .[J].Journal of Catalysis,2003,214:136.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%