欢迎登录材料期刊网

材料期刊网

高级检索

将高锰酸钾与活性炭(AC)原位氧化还原制备的活性炭载锰氧化物(MnOx/AC)用作臭氧分解的催化剂.采用扫描电镜、X射线光电子能谱、X射线衍射、电子自旋共振波谱、拉曼光谱以及程序升温还原研究了设计Mn负载量对负载锰氧化物性质(形貌、氧化态和晶体结构)的影响.结果表明, Mn负载量由0.44%增至11%,负载锰氧化物在活性炭表面由疏松的地衣状变为堆叠的纳米球状体,负载层的厚度由~180 nm增加至~710 nm,结构由氧化态+2.9到+3.1的低结晶β-MnOOH生长为由氧化态+3.7到+3.8的δ-MnO2结晶. MnOx/AC室温催化分解低浓度臭氧的活性与负载锰氧化物的形貌及含量密切相关. Mn负载量为1.1%的MnOx/AC具有疏松的地衣状形貌,催化分解臭氧的性能最高, Mn负载量为11%的MnOx/AC具有紧密的堆积结构,因而表现出最低的催化臭氧分解活性.

Manganese oxide catalysts supported on activated carbon (AC, MnOx/AC) for ozone decomposition were prepared by in situ reduction of the permanganate. The morphology, oxidation state, and crystal phase of the supported manganese oxide were characterized by scanning electron micros-copy, X-ray photoelectron spectroscopy, X-ray diffraction, electron spin resonance, Raman spec-troscopy, and temperature-programmed reduction. The supported MnOx layer was distributed on the surface of AC with a morphology that changed from a porous lichen-like structure to stacked nanospheres, and the thickness of the MnOx layer increased from 180 nm to 710 nm when the Mn loading was increased from 0.44% to 11%. The crystal phase changed from poorly crystallineβ-MnOOH to δ-MnO2 with the oxidation state of Mn increasing from +2.9-+3.1 to +3.7-+3.8. The activity for the decomposition of low concentration ozone at room temperature was related to the morphology and loading of the supported MnOx. The 1.1%MnOx/AC showed the best performance, which was due to its porous lichen-like structure and relatively high Mn loading, while 11%MnOx/AC with the thickest MnOx layer had the lowest activity owning to its compact morphol-ogy.

参考文献

[1] Weschler C J .[J].Environmental Health Perspectives,2006,114:1489.
[2] Weschler C J .[J].INDOOR AIR-INTERNATIONAL JOURNAL OF INDOOR AIR QUALITY AND CLIMATE,2000,10:269.
[3] Wisthaler A;Tamas G;Wyon DP;Strom-Tejsen P;Space D;Beauchamp J;Hansel A;Mark TD;Weschler CJ .Products of ozone-initiated chemistry in a simulated aircraft environment[J].Environmental Science & Technology: ES&T,2005(13):4823-4832.
[4] Destaillats H;Maddalena RL;Singer BC;Hodgson AT;McKone TE .Indoor pollutants emitted by office equipment: A review of reported data and information needs[J].Atmospheric environment,2008(7):1371-1388.
[5] Dhandapani B;Oyama S T .[J].Applied Catalysis B:Environmental,1997,11:129.
[6] Roland U;Holzer F;Kopinke ED .Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds Part 2. Ozone decomposition and deactivation of gamma-Al2O3[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2005(3/4):217-226.
[7] Niu JL.;Burnett J.;Tung TCW. .Quantification of dust removal and ozone emission of ionizer air-cleaners by chamber testing[J].Journal of Electrostatics,2001(0):20-24.
[8] Zhang PY;Liu J;Zhang ZL .VUV photocatalytic degradation of toluene in the gas phase[J].Chemistry Letters,2004(10):1242-1243.
[9] Biabani A;Rezaei M;Fattah Z .[J].Journal of Natural Gas Chemistry,2012,21:415.
[10] Zhang P Y;Zhang B;Shi R .[J].Front Environ Sci Eng China,2009,3:281.
[11] 张竞杰,张彭义,张博,王军伟.活性炭负载金催化分解空气中低浓度臭氧[J].催化学报,2008(04):335-340.
[12] 张博,张彭义,史蕊,王化军.溶胶负载法制备的Au/AC催化分解低浓度臭氧[J].催化学报,2009(03):235-241.
[13] Jiang C J;Zhang P Y .[J].Front Environ Sci Eng,2012,6:184.
[14] Radhakrishnan R;Oyama S T .[J].Journal of Catalysis,2001,199:282.
[15] Subrahmanyam C;Bulushev D A;Kiwi-Minsker L .[J].Applied Catalysis B:Environmental,2005,61:98.
[16] Baldi M;Sanchez-Escribano V;Gallardo-Amores J M;Milella F Busca G .[J].Applied Catalysis B:Environmental,1998,17:L175.
[17] Bastos S S T;órf?o J J M;Freitas M M A;Pereira M F R Figueiredo J L .[J].Applied Catalysis B:Environmental,2009,93:30.
[18] Santos V P;Pereira M F R;órf?o J J M;Figueiredo J L .[J].Journal of Hazardous Materials,2011,185:1236.
[19] Lee, S.W.;Kim, J.;Chen, S.;Hammond, P.T.;Shao-Horn, Y. .Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors[J].ACS nano,2010(7):3889-3896.
[20] Subramanian, V;Zhu, HW;Wei, BQ .Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte[J].Chemical Physics Letters,2008(4/6):242-249.
[21] Kim S C;Shim W G .[J].Applied Catalysis B:Environmental,2010,98:180.
[22] Yan D;Yan PX;Cheng S;Chen JT;Zhuo RF;Feng JJ;Zhang GA .Fabrication, In-Depth Characterization, and Formation Mechanism of Crystalline Porous Birnessite MnO2 Film with Amorphous Bottom Layers by Hydrothermal Method[J].Crystal growth & design,2009(1):218-222.
[23] Poinsignon C;Berthome G;Prelot B;Thomas F Villieras F .[J].J Elec-trochem Soc,2004,151:A1611.
[24] Toupin M;Brousse T;Belanger D .[J].CHEMISTRY OF MATERIALS,2004,16:3184.
[25] Wei C G;Xu C J;Li B H;Du H D Kang F Y .[J].Journal of Physics and Chemistry of Solids,2012,73:1487.
[26] Brock SL.;Tian ZR.;Giraldo O.;Zhou H.;Suib SL.;Duan NG. .A review of porous manganese oxide materials [Review][J].Chemistry of Materials,1998(10):2619-2628.
[27] Reddy R N;Reddy R G .[J].Journal of Power Sources,2003,124:330.
[28] Julien C.;Massot M.;Baddour-Hadjean R.;Franger S.;Bach S. Pereira-Ramos JP. .Raman spectra of birnessite manganese dioxides[J].Solid state ionics,2003(3/4):345-356.
[29] Julien C M;Massot M;Poinsignon C .[J].Spectrochim Acta Ptrt A,2004,60:689.
[30] Albering J H;Besenhard J O.Handbook of Battery Materials[M].New York:Wiley-VCH,1999:85.
[31] Craciun R;Nentwick B;Hadjiivanov K;Kn?zinger H .[J].Applied Catalysis A:General,2003,243:67.
[32] Carn?J;Ferrandon M;Bj?rnbom E;J?r?s S .[J].Applied Catalysis A:General,1997,155:265.
[33] Tang Q H;Huang X N;Chen Y T;Liu T Yang Y H .[J].Journal of Molecular Catalysis A:Chemical,2009,301:24.
[34] Calafat A.;Lopezagudo A.;Palacios JM.;Laine J. .EFFECT OF SURFACE OXIDATION OF THE SUPPORT ON THE THIOPHENE HYDRODESULFURIZATION ACTIVITY OF MO, NI, AND NIMO CATALYSTS SUPPORTED ON ACTIVATED CARBON[J].Journal of Catalysis,1996(1):20-30.
[35] Zhang X;Sun X Z;Zhang H T;Zhang D C Ma Y W .[J].Materials Chemistry and Physics,2012,137:290.
[36] Luo Y S;Jiang J;Zhou W W;Yang H P Luo J S Qi X Y Zhang H Yu D Y W Li C M Yu T .[J].Journal of Materials Chemistry,2012,22:8634.
[37] Lee, S.W.;Kim, J.;Chen, S.;Hammond, P.T.;Shao-Horn, Y. .Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors[J].ACS nano,2010(7):3889-3896.
[38] Zhang Q H;Wang Y;Itsuki S;Shishido T Takehira K .[J].Journal of Molecular Catalysis A:Chemical,2002,188:189.
[39] Velu S;Shah N;Jyothi T M;Sivasanker S .[J].Microporous and Mesoporous Materials,1999,33:61.
[40] Tang Q H;Huang X N;Chen Y T;Liu T Yang Y H .[J].Journal of Molecular Catalysis A:Chemical,2009,301:24.
[41] Nesbitt H W;Anerjee D B .[J].American Mineralogist,1998,83:305.
[42] Elzinga E J .[J].Environmental Science and Technology,2011,45:6366.
[43] Jiang C J;Zhang P Y;Zhang B;Li J G Wang M X .[J].Ozone:Sci Eng,2013,35:1.
[44] Alvarez PM;Masa FJ;Jaramillo J;Beltran FJ;Gomez-Serrano V .Kinetics of ozone decomposition by granular activated carbon[J].Industrial & Engineering Chemistry Research,2008(8):2545-2553.
[45] Mori K;Hashimoto A;Ikehata T .[P].JP Patent 4 326 940,1992.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%