欢迎登录材料期刊网

材料期刊网

高级检索

以Pt-TiO2为光催化剂,研究了气相甲醛分别在35h连续UV254 nm光催化、O3强化UV254 nm(O3+UV254 nm)光催化和真空紫外(UV254+185 nm)光催化中的降解效率,考察了副产物O3的去除率,采用X射线光电子能谱(xPS)法分析Pt-TiO2在不同光催化前后Pt的电子态和累积有机产物,研究纳米Pt对甲醛降解和O3去除的强化机理.连续光催化降解实验表明,以纳米Pt改性TiO2可以同时增强甲醛和O3的去除率,特别是O3的去除率可提高3.1-3.4倍.对催化剂C 1s和O1s峰分别经分峰拟合处理后,发现Pt-TiO2上累积的含羰基和羟基的有机物含量按以下顺序减少:UV254 nm光催化>O3强化UV254 nm光催化>真空紫外光催化,而在连续35 h光催化降解过程中,催化剂的失活现象却按相反的方向变得越来越不明显.负载的金属Pt在O3+UV254nm和UV254+185nm光催化过程中被氧化成PtOads和pt4+物种,而在UV254 nm光催化过程中金属Pt未被氧化,所以推测是气相中的O3和羟基自由基参与金属Pt的氧化过程.Pt-TiO2表面高价态的Pt氧化物种可作为光生电子捕获中心,强化光生载流子的分离过程,增强Pt-TiO2的光催化活性.Pt氧化物种可作为O3分解的活化中心,使Pt-TiO2对O3的分解效率远高于纯TiO2.以XPS对比研究在三种不同光催化环境中Pt-TiO2表面性质,可以解释在UV254+185nm光催化过程中纳米Pt对甲醛和O3同时去除的强化机理,并说明了催化剂不失活的内在原因.

参考文献

[1] Hodgson A T;Destaillats H;Sullivan D P;Fisk W J .[J].Indoor Air,2007,17:305.
[2] 皮展,蔡黎,钟俊波,龚茂初,陈耀强.Ce0.5-xZr0.5-xBa2xO2负载TiO2光催化降解气相苯[J].催化学报,2008(05):453-457.
[3] Li J H;He H;Hu C;Zhao J C .[J].Frontiers of Environmental Science & Engineering,2013,7:302.
[4] Jo W K;Kang H J .[J].Chinese Journal of Catalysis,2012,33:1672.
[5] Nie L H;Yu J G;Li X Y;Cheng B,Liu G,Jaroniec M .[J].Environmental Science & Technology,2013,47:2777.
[6] Yu J G;Li X Y;Xu Z H;Xiao W .[J].Environmental Science & Technology,2013,47:9928.
[7] Yu J G;Wang S H;Low J X;Xiao W .[J].Physical Chemistry Chemical Physics,2013,15:16883.
[8] Blount M C;Falconer J L .[J].Applied Catalysis B: Environmental,2002,39:39.
[9] Einaga H;Futamura S;Ibusuki T .[J].Applied Catalysis B: Environmental,2002,38:215.
[10] Obee T N;Hay S O .[J].Environmental Science & Technology,1997,31:2034.
[11] Ao C H;Lee S C;Mak C L;Chan L Y .[J].Applied Catalysis B: Environmental,2003,42:119.
[12] Kataoka S;Tompkins D T;Zeltner W A;Anderson M A .[J].Journal of Photochemistry and Photobiology A: Chemistry,2002,148:323.
[13] Zhang P Y;Liang F Y;Yu G;Chen Q,Zhu W P .[J].Journal of Photochemistry and Photobiology A: Chemistry,2003,156:189.
[14] Zhang PY;Liu J .Photocatalytic degradation of trace hexane in the gas phase with and without ozone addition: kinetic study[J].Journal of Photochemistry and Photobiology, A. Chemistry,2004(2/3):87-94.
[15] Takeuchi M;Hidaka M;Anpo M .[J].Journal of Hazardous Materials,2012,237-238:133.
[16] Kibanova D;Sleiman M;Cervini-Silva J;Destaillats H .[J].Journal of Hazardous Materials,2002,211-212:233.
[17] Zhang PY;Liu J;Zhang ZL .VUV photocatalytic degradation of toluene in the gas phase[J].Chemistry Letters,2004(10):1242-1243.
[18] Jeong J;Sekiguchi K;Lee W;Sakamoto K .Photodegradation of gaseous volatile organic compounds (VOCs) using TiO2 photoirradiated by an ozone-producing UV lamp: decomposition characteristics, identification of by-products and water-soluble organic intermediates[J].Journal of Photochemistry and Photobiology, A. Chemistry,2005(3):279-287.
[19] Wang J H;Ray M B .[J].Separation and Purification Technology,2000,19:11.
[20] Jeong J;Sekiguchi K;Sakamoto K .[J].Chemosphere,2004,57:663.
[21] Fu P F;Zhang P Y;Li J .[J].Applied Catalysis B: Environmental,2011,105:220.
[22] Quici N;Vera M L;Choi H;Puma G L,Dionysiou D D,Litter M I,Destaillats H .[J].Applied Catalysis B: Environmental,2010,95:312.
[23] 张丽,张彭义,陈崧哲.Ti基底的预处理对TiO2光催化膜长期稳定性的影响[J].催化学报,2007(04):299-306.
[24] Fu P F;Zhang P Y .[J].Applied Catalysis B: Environmental,2010,96:176.
[25] Fu P F;Luan Y;Dai X G .[J].Journal of Molecular Catalysis A: Chemical,2004,221:81.
[26] Kundu S;Wang Y M;Xia W;Muhler M .[J].Journal of Physical Chemistry C,2008,112:16869.
[27] Hoffmann M R;Martin S T;Choi W;Bahnemann D W .[J].Chemical Reviews,1995,95:69.
[28] Okpalugo T I T;Papakonstantinou P;Murphy H;McLaughlin J,Brown N M D .[J].Carbon,2005,43:153.
[29] Liu H M;Lian Z W;Ye X J;Shangguan W F .[J].Chemosphere,2005,60:630.
[30] Shiraishi F;Ohkubo D;Toyoda K;Yamaguchi S .[J].Chemical Engineering Journal,2005,114:153.
[31] Yu K P;Lee G W M .[J].Applied Catalysis B: Environmental,2007,75:29.
[32] Kibonova D;Cervini-Silva J;Destaillats H .[J].Environmental Science & Technology,2009,43:1500.
[33] Bera P.;Priolkar KR.;Gayen A.;Sarode PR.;Hegde MS.;Emura S. Kumashiro R.;Jayaram V.;Subbanna GN. .Ionic dispersion of Pt over CeO2 by the combustion method: Structural investigation by XRD, TEM, XPS, and EXAFS[J].Chemistry of Materials,2003(10):2049-2060.
[34] Ohtani B;lwai K;Nishimoto S-i;Sato S .[J].Journal of Physical Chemistry B,1997,101:3349.
[35] Dong F;Wang H Q;Sen G;Wu Z B,Lee S C .[J].Journal of Hazardous Materials,2011,187:509.
[36] Wu Z B;Sheng Z Y;Liu Y;Wang H Q,Mo J S .[J].Journal of Hazardous Materials,2011,185:1053.
[37] Falconer JL.;Magrini-Bair KA. .Photocatalytic and thermal catalytic oxidation of acetaldehyde on Pt/TiO2[J].Journal of Catalysis,1998(1):171-178.
[38] Lin J J;Kawai A;Nakajima T .[J].Applied Catalysis B: Environmental,2002,39:157.
[39] Naydenov A;Stoyanova R;Mehandjiev D .[J].Journal of Molecular Catalysis A: Chemical,1995,98:9.
[40] Hernández-Alonso M D;Coronado J M;Maira A J;Soria J,Loddo V,Augugliaro V .[J].Applied Catalysis B: Environmental,2002,39:257.
[41] Jiang C J;Zhang P Y;Zhang B;Li J G,Wang M X .[J].Ozone Science & Engineering,2013,35(04):308.
[42] Ohtani B;Kakimoto M;Nishimoto S;Kagiya T .[J].Journal of Photochemistry and Photobiology A: Chemistry,1993,70:265.
[43] Cho K C;Hwang K C;Sano T;Takeuchi K,Matsuzawa S .[J].Journal of Photochemistry and Photobiology A: Chemistry,2004,161:155.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%