欢迎登录材料期刊网

材料期刊网

高级检索

选取碳纳米管(CNT)催化剂催化丙烷氧化脱氢作为模型反应,通过系统研究CNT上多种活性氧位的微观结构,以及对其电子结构的表征,发现通过调控CNT大π体系与含氧官能团之间的共轭效应可以改变CNT的催化活性.CNT体系充当一个电子存储器,通过活性位与CNT的离域效应向活性位提供或夺取电子改变反应活性.对于丙烷氧化脱氢,当电子从CNT流向官能团时,第一步C-H断键活性提高,但反应过程中生成的中间体过于稳定将导致CNT催化剂活性位被占据,从而抑制第二步C-H活化生成丙烯.反之,当电子从官能团流向CNT时,第一步C-H断键活性较低,生成的中间体较不稳定,较易生成丙烯.因此,可以通过调控CNT与官能团之间的电子共轭效应来平衡两步C-H键的活化.这些结果有助于从微观尺度上理解CNT催化剂活性的来源,并为制备高活性CNT催化剂提供理论指导.

参考文献

[1] Cavani F;Ballarini N;Cericola A .[J].Catalysis Today,2007,127:113.
[2] Mamedov EA.;Corberan VC. .OXIDATIVE DEHYDROGENATION OF LOWER ALKANES ON VANADIUM OXIDE-BASED CATALYSTS - THE PRESENT STATE OF THE ART AND OUTLOOKS [Review][J].Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications,1995(1/2):1-40.
[3] Su D S;Zhang J;Frank B;Thomas A Wang X C Paraknowitsch J Schl(o)gl R .[J].ChemSusChem,2010,3:169.
[4] Yu D S;Nagelli E;Du F;Dai L M .[J].JPhys Chem Lett,2010,1:2165.
[5] Zhang J;Su D S;Zhang A H;Wang D,Schl(o)gl R,Hébert C .[J].Angewandte Chemie International Edition,2007,46:7319.
[6] Mestl G;Maksimova N I;Keller N;Roddatis V V,Schl(o)gl R .[J].Angewandte Chemie International Edition,2001,40:2066.
[7] Su D S;Maksimova N;Delgado J J;Keller N Mestl G Ledoux M J Schl(o)gl R .[J].Catalysis Today,2005,102-103:110.
[8] Zhang J;Liu X;Blume R;Zhang A H Schl(o)gl R Su D S .[J].Science,2008,322:73.
[9] Cavani F;Trifirò F .[J].Catalysis Today,1995,24:307.
[10] Perdew J P;Burke K;Ernzerhof M .[J].Physical Review Letters,1996,77:3865.
[11] Junquera J;Paz O;Sanchez-Portal D;Artacho E .[J].Physical Review B:Condensed Matter,2001,64:235111.
[12] Troullier N;Martins J L .[J].Physical Review B:Condensed Matter,1991,43:1993.
[13] Liu D C;Nocedal J .[J].Mathematical Programming Journal,1989,45:503.
[14] Shang C;Liu Z P .[J].JOURNAL OF CHEMICAL THEORY AND COMPUTATION,2010,6:1136.
[15] Henkelman G;Jonsson H .[J].Journal of Chemical Physics,1999,111:7010.
[16] Boehm H P .[J].Carbon,1994,32:759.
[17] Figueiredo J L;Pereira M F R;Freitas M M A;(O)rf(a)o J J M .[J].Carbon,1999,37:1379.
[18] Zhang J;Su D S;Blume R;Schl(o)gl R,Wang R,Yang X G,Gajovic A .[J].Angewandte Chemie International Edition,2010,49:8640.
[19] Banhart F;Kotakoski J;Krasheninnikov A V .[J].ACS Nano,2011,5:26.
[20] Stone A J;Wales D J .[J].Chemical Physics Letters,1986,128:501.
[21] Gass MH;Bangert U;Bleloch AL;Wang P;Nair RR;Geim AK .Free-standing graphene at atomic resolution[J].Nature nanotechnology,2008(11):676-681.
[22] Ugeda M M;Brihuega I;Guinea F;Gomez-Rodriguez J M .[J].Physical Review Letters,2010,104:096804.
[23] Girit C O;Meyer J C;Erni R;Rossell M D Kisielowski C Yang L Park C H Crommie M F Cohen M L Louie S G Zettl A .[J].Science,2009,323:1705.
[24] Meyer J CC;Kisielowski C;Erni R;Rossell M D Crommie M F Zettl A .[J].Nano Letters,2008,8:3582.
[25] Alexopoulos, K.;Reyniers, M.-F.;Marin, G.B..Reaction path analysis of propane selective oxidation over V _2O _5 and V _2O _5/TiO _2[J].Journal of Catalysis,2012:127-139.
[26] Fu H;Liu Z P;Li Z H;Wang W N Fan K N .[J].Journal of the American Chemical Society,2006,128:11114.
[27] Dai G L;Liu Z P;Wang W N;Lu J Fan K N .[J].Journal of Physical Chemistry C,2008,112:3719.
[28] Khavryuchenko O V;Frank B;Trunschke A;Hermann K Schl(o)gl R .[J].JPhys Chem C,2013,117:6225.
[29] Liu Y;Li Z H;Lu J;Fan K N .[J].Journal of Physical Chemistry C,2008,112:20382.
[30] Chen KD.;Bell AT.;Iglesia E. .Kinetic isotopic effects in oxidative dehydrogenation of propane on vanadium oxide catalysts[J].Journal of Catalysis,2000(1):197-203.
[31] Liu X;Frank B;Zhang W;Cotter T P,Schl(o)gl R,Su D S .[J].Angewandte Chemie International Edition,2011,50:3318.
[32] Frank B;Zhang J;Blume R;Schl(o)gl R,Su D S .[J].Angewandte Chemie International Edition,2009,48:6913.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%