欢迎登录材料期刊网

材料期刊网

高级检索

采用聚乙烯醇调控的水热法合成了对全氟辛酸(PFOA)有高光催化活性的纳米针状Ga2O3.其颗粒长3-6 μm,宽100-200nm,具有较大的比表面积(25.95 m2/g)和纳米孔结构(4-25 nm).在普通紫外光照射下(λ=254 nm),纳米针状Ga2O3光催化降解纯水中PFOA的反应半衰期为18.2 min,PFOA的一级反应降解动力学常数为2.28h-1,分别为商品Ga2O3和TiO2作为催化剂时的7.5和16.8倍.此外,当纳米针状Ga2O3与真空紫外光(λ=185 nm)结合时,不仅可以更高效地降解纯水中的PFOA(反应速率常数4.03h-1),而且能有效消除废水中共存有机物的影响,从而高效分解废水中的PFOA(反应速率常数3.51h-1),且此方法的能耗远远低于文献报道的其他方法的能耗值.

参考文献

[1] Benskin J P;Yeung L W Y;Yamashita N;Taniyasu S Lam P K S Martin J W .[J].Environmental Science and Technology,2010,44:9049.
[2] Zhang T;Wu Q;Sun H W;Zhang X Z Yun S H Kannan K .[J].Environmental Science and Technology,2010,44:4341.
[3] Shin H M;Vieira V M;Ryan P B;Detwiler R Sanders B Steenland K Bartell S M .[J].Environmental Science and Technology,2011,45:1435.
[4] Takagi S;Adachi F;Miyano K;Koizumi Y Tanaka H Mimura M Watanabe I Tanabe S Kannan K .[J].Chemosphere,2008,72:1409.
[5] Wania F .[J].Environmental Science and Technology,2007,41:4529.
[6] Zhao G P;Wang J;Wang X F;Chen S P Zhao Y Gu F Xu A Wu L J .[J].Environmental Science and Technology,2011,45:1638.
[7] Yang J H .[J].Chemosphere,2010,81:548.
[8] Nolan L A;Nolan J M;Shofer F S;Rodway N V Emmett E A .[J].Reproductive Toxicology,2009,27:231.
[9] Prevedouros K;Cousins IT;Buck RC;Korzeniowski SH .Sources, fate and transport of perfluorocarboxylates[J].Environmental Science & Technology: ES&T,2006(1):32-44.
[10] Schultz MM;Higgins CP;Huset CA;Luthy RG;Barofsky DF;Field JA .Fluorochemical mass flows in a municipal wastewater treatment facility[J].Environmental Science & Technology: ES&T,2006(23):7350-7357.
[11] Sinclair E;Kannan K .Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants[J].Environmental Science & Technology: ES&T,2006(5):1408-1414.
[12] Vecitis C D;Park H;Cheng J;Mader B T Hoffmann M R .[J].Front Environ Sci Engin China,2009,3:129.
[13] Krusic P J;Marchione A A;Roe D C .[J].Journal of Fluorine Chemistry,2005,126:1510.
[14] Cheng J;Vecitis C D;Park H;Mader B T Hoffmann M R .[J].Environmental Science and Technology,2010,44:445.
[15] Moriwaki H;Takagi Y;Tanaka M;Tsuruho K Okitsu K Maeda Y .[J].Environmental Science and Technology,2005,39:3388.
[16] Hori H;Hayakawa E;Einaga H;Kutsuna S Koike K Ibusuki T Kiatagawa H Arakawa R .[J].Environmental Science and Technology,2004,38:6118.
[17] Wang Y;Zhang PY;Pan G;Chen H .[J].Journal of Hazardous Materials,2008,160:181.
[18] Cao M H;Wang B B;Yu H S;Wang L L Yuan S H Chen J .[J].Journal of Hazardous Materials,2010,179:1143.
[19] Qu Y;Zhang C J;Li F;Chen J Zhou Q .[J].Water Research,2010,44:2939.
[20] Panchangam S C;Lin A;Shaik K L;Lin C F .[J].Chemosphere,2009,77:242.
[21] Zhao B X;Zhang P Y .[J].Catalysis Communications,2009,10:1184.
[22] Li Z M;Zhang P Y;Shao T;Li X Y .[J].Applied Catalysis B:Environmental,2012,125:350.
[23] Li X Y;Zhang P Y;Jin L;Shao T Li Z M Cao J J .[J].Environmental Science and Technology,2012,46:5528.
[24] Dillert R;Bahnemann D;Hidaka H .[J].Chemosphere,2007,67:785.
[25] ImoberdorfG;Mohseni M .[J].Journal of Hazardous Materials,2011,186:240.
[26] Giri, R.R.;Ozaki, H.;Okada, T.;Takikita, S.;Taniguchi, S.;Takanami, R. .Water matrix effect on UV photodegradation of perfluorooctanoic acid[J].Water Science and Technology,2011(10):1980-1986.
[27] Cheng J;Vecitis C D;Park H;Mader B T Hoffmann M R .[J].Environmental Science and Technology,2008,42:8057.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%