欢迎登录材料期刊网

材料期刊网

高级检索

利用一步柠檬酸络合法合成了钙钛矿LaCo1-xZnxO3(x=0,0.05,0.1,0.2,0.3,0.5),并将其用于乙醇水蒸气重整反应.利用X射线衍射、程序升温还原和X射线光电子能谱对催化剂进行了表征.结果表明,Zn的加入不利于形成LaCo1-xZnxO3钙钛矿结构,当x≥0.1时产生了一些分离相.新鲜LaCo0.9Zn0.1O3催化剂中意外发现存在Co3O4相,这有利于催化剂反应性能的提高.反应后的催化剂结构发生变化,形成了La2O2CO3,而该物质有利于积炭的消除和甲烷的重整.

Nanostructured LaCo1-xZnxO3 (x = 0, 0.05, 0.1, 0.2, 0.3 and 0.5) perovskites were synthesized by a one-step citric acid-complexing method for hydrogen production by the steam reforming of ethanol. For comparison, 8% CoO/ZnO and 8% CoO/La2O3 were prepared by impregnation and evaluated. The catalyst samples were characterized by X-ray diffraction, temperature-programmed reduction, and X-ray photoelectron spectroscopy. The results indicated that zinc did not favor the formation of the LaCo1-xZnxO3 perovskite and the structures of the substituted samples were less weakening than that of LaCoO3. Some segregation was observed for x ≥ 0.1. The reactivity of the studied samples was sensitive to the zinc content and lower substitution values were found to be better. An unexpected phase (Co3O4) appeared in the fresh LaCo0.9Zn0.1O3 sample. The presence of the Co3O4 phase increased the reactivity toward hydrogen production by the steam reforming of ethanol. The presence of La2O2CO3 is responsible for the low carbon deposition and the CH4 selectivity in the aged samples.

参考文献

[1] Vizcaíno A J;Carrero A;Calles J A .[J].Catalysis Today,2009,146:63.
[2] Fishtika I;Alexandera A;Dattaa R;Geana D .[J].International Journal of Hydrogen Energy,2000,25:31.
[3] Ioannides T .[J].Journal of Power Sources,2001,92:17.
[4] Rossi C C R S;Alonso C G;Antunes O A C;Guirardello R Cardozo-Filho L .[J].International Journal of Hydrogen Energy,2009,34:323.
[5] Zhang L F;Liu J;Li W;Guo G L Zhang J L .[J].Journal of Natural Gas Chemistry,2009,18:55.
[6] Pereira EB;Homs N;Marti S;Fierro JLG;de la Piscina PR .Oxidative steam-reforming of ethanol over Co/SiO2, Co-Ru/SiO2 and Co-Ru/SiO2 catalysts: Catalytic behavior and deactivation/regeneration processes[J].Journal of Catalysis,2008(1):206-214.
[7] Wang H;Ye J L;Liu Y;Li Y D Qin Y N .[J].Catalysis Today,2007,129:305.
[8] Birot A;Epron F;Descorme C;Duprez D .Ethanol steam reforming over Rh/CexZr1-xO2 catalysts: Impact of the CO-CO2-CH4 interconversion reactions on the H-2 production[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2008(1):17-25.
[9] Cai WJ;Wang FG;Zhan ES;Van Veen AC;Mirodatos C;Shen WJ .Hydrogen production from ethanol over Ir/CeO2 catalysts: A comparative study of steam reforming, partial oxidation and oxidative steam reforming[J].Journal of Catalysis,2008(1):96-107.
[10] Zhang B C;Tang X L;Li Y;Cai W J Xu Y D Shen W J .[J].Catalyst Communication,2006,7:367.
[11] Profeti L P R;Ticianelli E A;Assaf E M .[J].Journal of Power Sources,2008,175:482.
[12] Vizcaíno A J;Carrero A;Calles J A .[J].International Journal of Hydrogen Energy,2007,32:1450.
[13] Frusteri F;Freni S;Spadaro L;Chiodo V Bonura G Donato S Cavallaro S .[J].Catalyst Communication,2004,5:611.
[14] 王红,刘鹏翔,刘源,秦永宁.乙醇水蒸气重整Co/CeO2催化剂[J].催化学报,2006(11):976-982.
[15] Llorca J;de la Piscina P R;Dalmon J A;Sales J Homs N .[J].Applied Catalysis B:Environmental,2003,43:355.
[16] Llorca J;Homs N;Sales J;Fierro J L G de la Piscina P R .[J].Journal of Catalysis,2004,222:470.
[17] Guil J M;Homs N;Llorca J;de la Piscina P R .[J].Journal of Physical Chemistry B,2005,109:10813.
[18] Fatsikostas A N;Kondarides D I;Verykios X E .[J].Catalysis Today,2002,75:145.
[19] Song H;Ozkan US .Ethanol steam reforming over Co-based catalysts: Role of oxygen mobility[J].Journal of Catalysis,2009(1):66-74.
[20] Song H;Ozkan U S .[J].Journal of Physical Chemistry A,2010,114:3796.
[21] Lin S S Y;Daimon H;Ha S Y .[J].Applied Catalysis A:General,2009,366:252.
[22] Tsipouriari V A;Verykios X E .[J].Journal of Catalysis,1999,187:85.
[23] Chen H Q;Yu H;Peng F;Yang G X Wang H J Yang J Tang Y .[J].Chemical Engineering Journal,2010,160:333.
[24] Chen H Q;Yu H;Peng F;Wang H J Yang J Pan M Q .[J].Journal of Catalysis,2010,269:281.
[25] de Lima S M;da Silva A M;da Costa L O O;Assaf J M Jacobsc G Davis B H Mattos L V Noronha F B .[J].Applied Catalysis A:General,2010,377:181.
[26] Chen S Q;Liu Y .[J].International Journal of Hydrogen Energy,2009,34:4735.
[27] Chen S Q;Wang H;Liu Y .[J].International Journal of Hydrogen Energy,2009,34:7995.
[28] Bedel L;Roger A C;Estournes C;Kiennemann A .[J].Catalysis Today,2003,85:207.
[29] Bedel L;Roger A C;Rehspringer J L;Zimmermann Y Kiennemann A .[J].Journal of Catalysis,2005,235:279.
[30] Tien-Thao N;Alamdari H;Zahedi-Niaki MH;Kaliaguine S .LaCo1-xCuxO3-delta perovskite catalysts for higher alcohol synthesis[J].Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications,2006(0):204-212.
[31] Huang L;Bassir M;Kaliaguine S .Reducibility of Co3+ in perovskite-type LaCoO3 and promotion of copper on the reduction of Co3+ in perovskite-type oxides[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2005(1/4):360-375.
[32] Hosseini S A;Sadeghi M T;Alemi A;Niaei A Salari D Kafi-Ahmadi L .[J].催化学报 (Chin J Catal),2010,31:747.
[33] Khalil MS. .Synthesis, X-ray, infrared spectra and electrical conductivity of La/Ba-CoO3 systems[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):64-70.
[34] Rao G V S;Rao C N R;Ferraro J R .[J].Applied Spectroscopy,1970,24:436.
[35] Salavati-Niasari M;Davar F;Mazaheri M;Shaterian M .Preparation of cobalt nanoparticles from [bis(salicylidene)cobalt(II)]-oleylamine complex by thermal decomposition[J].Journal of Magnetism and Magnetic Materials,2008(3/4):575-578.
[36] Salavati-Niasari M;Khansari A;Davar F;Salavati-Niasari M Khansari A Davar F .[J].Inorganica Chimica Acta,2009,362:4937.
[37] Worayingyong A;Kangvansura P;Ausadasuk S;Praserthdam P .The effect of preparation: Pechini and Schiff base methods, on adsorbed oxygen of LaCoO3 perovskite oxidation catalysts[J].Colloids and Surfaces, A. Physicochemical and Engineering Aspects,2008(1/3):217-225.
[38] Royer S;BérubéF;Kaliaguine S .[J].Applied Catalysis A:General,2005,282:273.
[39] Guo Q;Liu Y .[J].Applied Catalysis B:Environmental,2008,82:19.
[40] Navarro RM;Alvarez-Galvan MC;Villoria JA;Gonzalez-Jimenez ID;Rosa F;Fierro JLG .Effect of Ru on LaCoO3 perovskite-derived catalyst properties tested in oxidative reforming of diesel[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2007(3/4):247-258.
[41] Natile M M;Ugel E;Maccato C;Glisenti A .[J].Applied Catalysis A:General,2007,72:351.
[42] Khassin A A;Yurieva T M;Kaichev V V;Bukhtiyarov V I Budneva A A Paukshtis E A Parmon V N .[J].Journal of Molecular Catalysis A:Chemical,2001,175:189.
[43] Barbero BP;Gamboa JA;Cadus LE .Synthesis and characterisation of La1-xCaxFeO3 perovskite-type oxide catalysts for total oxidation of volatile organic compounds[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2006(1/2):21-30.
[44] Wang Y G;Ren J W;Wang Y Q;Zhang F Y Liu X H Guo Y Lu G Z .[J].Journal of Physical Chemistry C,2008,112:15293.
[45] Taguchi H.;Kido H.;Tabata K. .Relationship between crystal structure and electrical property of K2NiF4-type (Ca1-xNd1-x) CoO4-delta[J].Physica, B. Condensed Matter,2004(1/4):271-277.
[46] LIorca J;Dalmon J A;de la Piscin P;Homs N .[J].Applied Catalysis A:General,2003,243:261.
[47] LIorca J;Homs N;de la Piscina P R .[J].Journal of Catalysis,2004,227:556.
[48] Kwak B S;Kim J;Kang M .[J].International Journal of Hydrogen Energy,2010,35:11829.
[49] Casanovas A;Roig M;de Leitenburg C;Trovarelli A Llorca J .[J].International Journal of Hydrogen Energy,2010,35:7690.
[50] Karim A M;Su Y;Sun J;Yang C Strohm J J King D L Wang Y .[J].Applied Catalysis A:General,2010,96:441.
[51] Valderrama G;Kiennemann A;Goldwasser M R .[J].Catalysis Today,2008,133:142.
[52] Hyman M P;Vohs J M .[J].Surface Science,2011,605:383.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%