欢迎登录材料期刊网

材料期刊网

高级检索

采用碱土金属(Mg,Ca,Sr,Ba)对NaY分子筛进行改性,并采用氮气物理吸附、X射线衍射、氨气及二氧化碳程序升温脱附等技术对样品进行了表征,考察了阳离子物种对NaY结构、表面酸碱分布等的影响,以进一步甄别影响催化剂活性的关键因素.结果表明,阳离子物种所引入的碱性位尤其是中强碱性位控制着丙烯酸的生成,而表面酸性位则影响乙醛的生成.当以钡含量为2%的NaY分子筛为催化剂,在乳酸进料浓度为38%,进料空速为3 h-1及325℃反应条件下,丙烯酸收率最高,为44.6%.这归结于该催化剂表面具有最多的中强碱性位,且表面Ba2+簇具有合适的Ba-O键长及碱度.

Various NaY zeolites modified by alkaline earth metals (Mg, Ca, Sr, and Ba) were synthesized and used as catalysts for the dehydration of lactic acid to acrylic acid to investigate the effects of cationic species on the structure and surface acid/base distribution of the NaY zeolites. The important factors that affect their catalytic performance were also identified. The catalysts were characterized by N2 physical adsorption/desorption, X-ray diffraction, temperature-progranuned desorption of NH3, and temperature-programmed desorption of CO2. The results show that the basic sites that are induced by modified metallic species, particularly the medium basic sites, are mainly responsible for the formation of acrylic acid. The generation of acetaldehyde was affected by the acidic sites. Among the catalysts, 2%Ba/NaY showed the highest yield of acrylic acid at up to 44.6% (38% solution, LHSV = 3 h-1, 325 ℃) because it contained the most medium basic sites and a suitable Ba2+ cluster character.

参考文献

[1] Lin M M .[J].Applied Catalysis A:General,2001,207:1.
[2] Boesel L F;Reis R L .[J].Progress in Polymer Science,2008,33:180.
[3] Bernkop-Schnürch A .[J].Advanced Drug Delivery Reviews,2005,57:1569.
[4] Huber, GW;Chheda, JN;Barrett, CJ;Dumesic, JA .Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J].Science,2005(5727):1446-1450.
[5] Huber G W;Cortright R D;Dumesic J A .[J].Angewandte Chemie International Edition,2004,43:1549.
[6] Corma A;Iborra S;Velty A .[J].Chemical Reviews,2007,107:2411.
[7] Holmen R E;Township W B;County R .[P].US 2 859 240,1958.
[8] Gunter G C;Langford R H;Jackson J E;Miller D J .[J].Industrial and Engineering Chemistry Research,1995,34:974.
[9] Tam M S;Gunter G C;Craciun R;Miller D J Jackson J E .[J].Industrial and Engineering Chemistry Research,1997,36:3505.
[10] Varadarajan S.;Miller DJ. .Catalytic upgrading of fermentation-derived organic acids [Review][J].Biotechnology Progress,1999(5):845-854.
[11] Xu X B;Lin J P;Cen P L .[J].Chinese Journal of Chemical Engineering,2006,14:419.
[12] Williams B A;Babitz S M;Miller J T;Snurr R Q Kung H H .[J].Applied Catalysis A:General,1999,177:161.
[13] Weitkamp J. .Zeolites and catalysis[J].Solid state ionics,2000(1/2):175-188.
[14] Wang H J;Yu D H;Sun P;Yan J Wang Y Huang H .[J].Catalyst Communication,2008,9:1799.
[15] Sun P;Yu D H;Fu K M;Gu M Y Wang Y Huang H Ying H J .[J].Catalyst Communication,2009,10:1345.
[16] Sung C Y;Broadbelt L J;Snurr R Q .[J].Catalysis Today,2008,136:64.
[17] Mo(i)se J C;Bellat J P;Méthivier A .[J].Microporous and Mesoporous Materials,2001,43:91.
[18] Li L D;Shen Q;Li J J;Hao Z P Xu Z P Lu G Q M .[J].Applied Catalysis A:General,2008,344:131.
[19] Tonetto G;Atias J;de Lasa H .[J].Applied Catalysis A:General,2004,270:9.
[20] Costa C;Lopes J M;Ribeiro F R .[J].Journal of Molecular Catalysis A:Chemical,1999,144:221.
[21] Klepel O;Hunger B .Temperature-programmed desorption (TPD) of carbon dioxide on alkali-metal cation-exchanged faujasite type zeolites[J].Journal of thermal analysis and calorimetry,2005(1):201-206.
[22] Walton, KS;Abney, MB;LeVan, MD .CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange[J].Microporous and Mesoporous Materials,2006(1/3):78-84.
[23] Lavalley J C .[J].Catalysis Today,1996,27:377.
[24] Deka R C;Hirao K .[J].Journal of Molecular Catalysis A:Chemical,2002,181:275.
[25] Deka RC.;Hirao K.;Roy RK. .Basicity of the framework oxygen atom of alkali and alkaline earth-exchanged zeolites: a hard-soft acid-base approach[J].Chemical Physics Letters,2000(5-6):576-582.
[26] Yu D H;Sun P;Tang Z C;Li Z X,Huang H.[J].Canadian Journal of Chemical Engineering,2010
[27] Chakarova K;Hadjiivanov K;Atanasova G;Tenchev K .Effect of preparation technique on the properties of platinum in NaY zeolite: A study by FTIR spectroscopy of adsorbed CO[J].Journal of molecular catalysis, A. Chemical,2007(1/2):270-279.
[28] Kadono T;Chantani H;Kubota T;Okamoto Y .[J].Microporous and Mesoporous Materials,2007,101:191.
[29] Frising T;Leflaive P .[J].Microporous and Mesoporous Materials,2008,114:27.
[30] Pichon C;Méthivier A;Simonot-Grange M H;Baerlocher C .[J].Journal of Physical Chemistry B,1999,103:10197.
[31] Cheng L;Ge Q F .[J].Surface Science,2007,601:L65.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%