欢迎登录材料期刊网

材料期刊网

高级检索

以堇青石蜂窝陶瓷为基底,A12O3浆料为过渡胶体,Cu和Co为催化活性组分,制备了一系列CuxCo1-x/Al2O3/堇青石(x=0~1)整体式催化剂.采用X射线衍射、X射线光电子能谱、扫描电镜和程序升温还原等手段对催化剂进行了表征.以甲苯为模型化合物.在微型固定床反应器上评价了催化剂的催化性能.结果表明,当Cu含量较低时,在整体式催化剂上形成了Cu-Co-O固溶体:当Cu含量较高时,可以检测到CuO.在催化剂表面,Co以CO2+和CO3+形式存在,而Cu主要以Cu2+形式存在.适量Cu的加入可以改善催化剂中Co的氧化还原性能,有利于催化剂活性的提高.在所制备的催化剂中,Cu0.5Co0.5/Al2O3/堇青石整体式催化剂活性最高.在315℃可以完全催化燃烧消除甲苯.

A series of CuxCo1-x/Al2O3/cordierite (x = 0-1) catalysts were prepared using cordierite as a support, a boehmite primer sol as the first washcoat layer and copper as well as cobalt oxides as the activity washcoat layer. The structure of the catalysts was characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and temperature-programmed reduction. Toluene was chosen as a model compound to evaluate the catalytic activity in a conventional fixed-bed quartz reactor. The results indicate that Cu-Co-O was present when the Cu content was low. CuO diffraction peaks were observed when the Cu content was high. Both Co2+ and Co3+ exist on the surface of the obtained monolithic catalysts while Cu2+ is the main Cu species. The addition of a certain amount of copper oxide improved the reducibility of the cobalt oxide, which enhanced the catalytic activity of the catalysts. All the obtained catalysts showed good activity for the catalytic combustion of toluene. The Cu0.5Co0.5/Al2O3/cordierite catalyst showed the best catalytic activity. Toluene was completely oxidized at 315℃.

参考文献

[1] He C;Li P;Cheng J;Wang H Li J Li Q Hao Z .[J].Applied Catalysis A:General,2010,382:167.
[2] Palacio L A;Velasquez J;Echavarr(i)a A;Faro A Ribeiro F R Ribeiro M F .[J].Journal of Hazardous Materials B:Environmental Technologies,2010,177:407.
[3] Liu Z M;Wang J L;Zhong J B;Chen Y Q Yan S H Gong M C .[J].Journal of Hazardous Materials B:Environmental Technologies,2007,149:742.
[4] Palacio L A;Silva J M;Ribeiro F R;Ribeiro M F .[J].Catalysis Today,2008,133-135:502.
[5] Huang H;Liu Y;Tang W;Chen Y .[J].Catalyst Communication,2008,9:55.
[6] Kim K J;Ahn Ha .[J].Appl Catal 5,2009,91:308.
[7] Karthik M;Lin L Y;Bai H .[J].Microporous and Mesoporous Materials,2009,117:153.
[8] Chen M;Fan L;Qi L;Luo X Zhou R Zheng X .[J].Catalyst Communication,2009,10:838.
[9] Lu C Y;Wey M Y;Chen L I .[J].Applied Catalysis A:General,2007,325:163.
[10] Liu Q Y;Liu Z Y;Wu W Z .[J].Catalysis Today,2009,147:S285.
[11] Avila P;Montes M;Miro E E .[J].Chemical Engineering Journal,2005,109:11.
[12] Li L;Xue B;Chen J;Guan N Zhang F Liu D Feng H .[J].Applied Catalysis A:General,2005,292:312.
[13] Cesar D V;Perez C A;Salim VMM;Schtnal M .[J].Applied Catalysis A:General,1999,176:205.
[14] Radwan N R E;Mokhtar M;El-Shobaky G A .[J].Applied Catalysis A:General,2003,241:77.
[15] Ding X L;Yuan X X;Jia C;Ma Z F .[J].International Journal of Hydrogen Energy,2010,35:11077.
[16] 师瑞娟,王非,牟效玲,塔娜,李勇,黄秀敏,申文杰.粒子尺寸对Cu/MgO上1-辛醇转移脱氢反应的影响[J].催化学报,2010(06):626-630.
[17] Avgouropoulos G;Ioannides T;Matralis H .Influence of the preparation method on the performance of CuO-CeO2 catalysts for the selective oxidation of CO[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2005(1/2):87-93.
[18] Zhu P;Li J;Zuo S;Zhou R .[J].Applied Surface Science,2008,255:2903.
[19] Khassin A A;Yurieva T M;Kaichev V V;Bukhtiyarov V L Budneva A A Paukshtis E A Parmon V N .[J].Journal of Molecular Catalysis A:Chemical,2001,175:189.
[20] Zhu J;Gao Q .[J].Microporous and Mesoporous Materials,2009,124:144.
[21] Wang C H .[J].Chemosphere,2004,55:11.
[22] Li W B;Zhuang M;Wang J X .[J].Catalysis Today,2008,137:340.
[23] Moretti E;Lenarda M;Storaro L;Talon A Montanari T Busca G Rodriguez-Castellon E Jimenez-Lopez A Turco M Bagnasco G Frattini R .[J].Applied Catalysis A:General,2008,335:46.
[24] Liu L;Chen Y;Dong L;Zhu J Wan H Liu B Zhao B Zhu H Sun K Dong L Chen Y .[J].Applied Catalysis B:Environmental,2009,90:105.
[25] Zou Z Q;Meng M;Zha Y Q .[J].Journal of Alloys and Compounds,2009,470:96.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%