欢迎登录材料期刊网

材料期刊网

高级检索

Solving the problem of catalyst deactivation is essential in process design. To do this, various aspects of the kinetics of processes with catalyst deactivation, and their different mechanisms, are discussed. Catalyst deactivation often cannot be avoided, but more knowledge on its mechanism can help to find kinetic means to reduce its harmful consequences. When deactivation is caused by coke, the generation of coke precursors is the determining step in the deactivation kinetics. Different types of deactivation were distinguished that lead to different evolution of the process. The phenomenon of non-uniform coking can be linked to catalyst surface non-uniformity. For the class of catalysts with more than one type of active sites, an explanation was suggested for the observed trends in the deactivation modes. For catalytic processes using catalyst panicles of industrial size, the influence of intraparticle diffusion resistance is important. The analysis showed that for a number of processes, the decrease of the reaction rate due to deactivation is less under diffusion control. For certain reaction mechanisms,there exist operation conditions where the rate of the process under diffusion control exceeds the rate in the kinetic control regime. A significant problem is the change of selectivity in the course of catalyst deactivation. The selectivity may either decrease or increase, and depends on the reaction mechanism during deactivation. The changes are larger when there is no diffusion resistance. The intentional poisoning of catalysts and its influence on catalyst activity and selectivity for the process of ethylene oxide production was discussed.

参考文献

[1] Hughes R.Deactivation of Catalysts[M].New York:Academic Press,Inc,1984
[2] Bartholomew CH. .Mechanisms of catalyst deactivation [Review][J].Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications,2001(1/2):17-60.
[3] Oudar J;Wise H.Deactivation and Poisoning of Catalysts[M].New York,USA:Marcel Dekker,Inc,1985
[4] Butt J B;Petersen E E.Activation,Deactivation and Poisoning of Catalysts[M].San Diego:academic Press,1988
[5] Al-Dalama K;Stanislaus A .[J].Chemical Engineering Journal,2006,120:33.
[6] Hegedus L I;McCabe R W.Catalyst Poisoning[M].New York,USA:Marcel Dekker,Inc,1984
[7] Krishna A S .[J].Catalysis Review:Science and Engineering,1990,32:279.
[8] Duprez D .[J].Applied Catalysis A:General,1992,82:111.
[9] Farrauto B R;Bartholomew C H.Fundamentals of Industrial Catalytic Processes[M].London:Chapman & Hall,Kluwer Academic Publishers,1997
[10] Twig M V;Spencer M S .[J].Applied Catalysis A:General,2001,212:161.
[11] Thomas J M;Thomas W J.Principles and Practice of Heterogeneous Catalysis[M].Weinheim:VCH,2005
[12] Furimsky E;Massoth F E .[J].Catalysis Today,1999,52:381.
[13] Froment G F .[J].Applied Catalysis A:General,2001,212:117.
[14] Murzin DY.;Avetisov AK. .Deactivation kinetics over induced nonuniform surfaces with linear steps of surface reactions[J].Chemical Engineering Science,1998(13):2469-2474.
[15] Petrov L;Eliyas A;Shopov D .[J].Appl Catal,1985,18:87.
[16] Petrov L;Eliyas A;Shopov D .[J].Applied Catalysis A:General,1986,24:145.
[17] Eliyas A;Petrov L;Shopov D .[J].Applied Catalysis A:General,1988,41:39.
[18] Petrov L;EliyasA .[J].Izv Khim,1988,21:289.
[19] Liu W;Eliyas A;Petrov L .[J].Applied Catalysis A:General,1990,61:265.
[20] Wolf E E;Petersen E E .[J].Journal of Catalysis,1977,46:190.
[21] Wolf E E;Petersen E E .[J].Journal of Catalysis,1977,47:28.
[22] Levenspiel O .[J].Journal of Catalysis,1972,25:265.
[23] Froment G F .[J].Studies in Surface Science and Catalysis,1980,6:1.
[24] Butt J B;Wachter C K;Billimoria R M .[J].Chemical Engineering Science,1978,33:1321.
[25] Kumbilieva K;Kiperman S L;Petrov L .[J].Collection of Czechoslovak Chemical Communications,1992,57:2452.
[26] Kumbilieva K;Kiperman S L;Petrov L .[J].Kinetika I Kataliz,1995,36:73.
[27] Wheeler A .[J].Advances in Catalysis,1955,2:105.
[28] Satterfield C N.Mass Transfer in Heterogeneous Catalysis[M].Cambridge:Academic Press,1970
[29] Froment G F;Bischoff K B.Chemical Reactor Analysis and Design[M].New York:Wiley,1990
[30] Yu L C;Butt J B .[J].Studies in Surface Science and Catalysis,1991,68:343.
[31] Temkin M I .[J].Advances in Catalysis,1979,28:173.
[32] Best D A;Wojciechowski B W .[J].Canadian Journal of Chemical Engineering,1976,54:197.
[33] Zhorov Y M.Kinetics of Industrial Organic Reactions[M].Moscow:Nauka,1989
[34] Kumbilieva K;Kostyukovsky M M;Petrov L;Kiperman S L .[J].Studies in Surface Science and Catalysis,1987,34:381.
[35] Kumbilieva K;Kostyukovsky M M;Petrov L;Kiperman S L .[J].Chemical Engineering Science,1988,43:1195.
[36] Kumbilieva K;Sergeeva T Y;Lok L K;Petrov L Kiperman S L .[J].Applied Catalysis A:General,1992,82:159.
[37] Pshezhetskii S;Rubinstein R .[J].Zhurnal Fizicheskoi Khimii,1946,20:207.
[38] Petrov L;Kumbilieva K;Kirkov N .[J].Applied Catalysis A:General,1990,59:31.
[39] Gaidai N A;Butovsky M E;Kol'tsov H I;Kiperman S L Kotel'nikov G R .[J].Kinetika I Kataliz,1977,18:1463.
[40] Kumbilieva K;Petrov L;Kiperman S L .[J].Studies in Surface Science and Catalysis,1994,88:175.
[41] Kumbilieva K;Petrov L;Kiperman S L .[J].Applied Catalysis A:General,1994,118:199.
[42] Kiperman S L .[J].Kinetika I Kataliz,1981,22:1463.
[43] Yang S H;Satterfield C N .[J].Journal of Catalysis,1983,81:168.
[44] Ozkan U S;Zhang L;Ni Sh;Moctezuma E .[J].Journal of Catalysis,1994,148:181.
[45] Topsφe H;Clausen B S;Massoth F E.Hydrotreating Catalysis[M].Beilin:Springer-Verlag,1996
[46] Sachtler W H M .[J].Journal of Molecular Catalysis,1984,25:1.
[47] Biloen P;Dantzenberg F M;Sachtler W M H .[J].Journal of Catalysis,1977,50:77.
[48] Cortright R D;Dumesic J A .[J].Journal of Catalysis,1994,148:771.
[49] Meriaudeau P.;Thangaraj A.;Bianchi CL.;Carli R. Vishvanathan V.;Narayanan S.;Naccache C. .STUDIES ON PTXSNY BIMETALLICS IN NAY .1. PREPARATION AND CHARACTERIZATION[J].Journal of Catalysis,1995(2):345-354.
[50] Merlen E.;Bertolini JC.;Delichere P.;Zanier N.;Didillon B.;Beccat P. .CHARACTERIZATION OF BIMETALLIC PT-SN/AL2O3 CATALYSTS - RELATIONSHIP BETWEEN PARTICLE SIZE AND STRUCTURE[J].Journal of Catalysis,1996(1):178-188.
[51] Beeckman J W;Froment G F .[J].Industrial and Engineering Chemistry Fundamentals,1979,18:245.
[52] Beeckman J W;Froment G F .[J].Industrial and Engineering Chemistry Fundamentals,1982,21:243.
[53] Kumbilieva K;Petrov L .[J].Chinese Journal of Catalysis,2010,31:1.
[54] Kiperman S L;Kumbilieva K;Petrov L .[J].Industrial and Engineering Chemistry Research,1989,28:376.
[55] Lok L K;Gaidai N A;Kiperman S L .[J].Kinetika I Kataliz,1986,27:1112.
[56] Lok L K;Gaidai N A;Kiperman S L;Kogan S B .[J].Kinetika I Kataliz,1990,31:483.
[57] Kumbilieva K;Gaidai N A;Nekrasov N V;Petrov L Lapidus A L .[J].Chemical Engineering Journal,2006,120:25.
[58] Kogan S B;Podkletnova N M;Ilyasova A S;Bursian N R.[J].Zhurn Prikl Khimii,1983:1832.
[59] Yang L Q;De Pristo A E .[J].Journal of Catalysis,1994,148:575.
[60] Haruta M;Tsobota S;Kobayashi T;Kageyana H Genet M G Delmon B .[J].Journal of Catalysis,1993,144:175.
[61] Bond G C;Thompson D T .[J].Catalysis Review:Science and Engineering,1999,41:319.
[62] Petrov L .[J].Studies in Surface Science and Catalysis,2000,130:2345.
[63] Somorjai G A .[J].Catalysis Today,1992,12:343.
[64] Eliyas A;Petrov L .[J].Applied Catalysis A:General,1990,62:11.
[65] Cornelio A A .[J].INDIAN CHEMICAL ENGINEER Section A,2006,48:164.
[66] Petrov L;Vladov Ch;Neshev N;Boney Ch,Prahov L,Kirkov N,Vasileva M,Filkova D,Dancheva S .[P].BG 41960,1986.
[67] Petrov L;Vladov Ch;Bonev Ch;Prahov L,Kirkov N,Eliyas A,Neshev N,Filkova D,Dancheva S.EuropaCat-2,Book of Abstracts,Maastricht[M].The Netherlands,1995:646.
[68] Petrov L;Derouane E G;Parmon V N;Lemos F,Ribeiro F R.Principles and Methods for Accelerated Catalyst Design and Testing[A].New York:Kluwer Academic,2002:69.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%