基于不同椭圆度凹模胀形原理,选择具有良好热稳定性和导热性能的甲基乙烯基硅橡胶作为黏性介质,进行AZ31B镁合金黏性介质温热胀形试验,并采用有限元分析软件ANSYS/LS-DYNA对成形过程进行分析。确定AZ31B镁合金黏性介质温热胀形最佳温度,以及凹模椭圆度对AZ31B镁合金黏性介质温热胀形变形规律的影响。同时根据网格应变原理,通过对不同椭圆度极限胀形试件的测量,绘制出 AZ31B 镁合金黏性介质温热成形极限图(FLD)。研究结果表明,在耐热温度范围内,热态黏性介质能够适应试件几何形状的变化建立非均匀压力场,非均匀压力差值随着椭圆度的增大而减小,根据极限胀形试验绘制出的成形极限图,能够综合反映出零件复杂程度与极限变形程度的关系。
Based on the bulging principle of different ellipticity dies, the methyl vinyl silicone rubber with excellent thermal stability and heat transfer performance was chosen as the viscous medium. The finite element analysis and experiments of viscous warm pressure bulging (VWPB) of AZ31B magnesium alloy were conducted to analyzethe influence of different ellipticity dies onthe formability of AZ31B magnesium alloy. At the same time, based on the grid strain rule, the forming limit diagram (FLD) of VWPB of AZ31B magnesium alloy was obtained through measuring the strain of bulgingspecimens. The results showedthat at the temperature range of viscous medium thermal stability, the viscous medium can fit the geometry variation of sheet and generate non-uniform pressure field, and as the die ellipticity increases, the difference valueof non-uniform pressure reduces.Meanwhile, according to the FLD,the relationship between part complexity and ultimate deformation was investigated.
参考文献
[1] | L. C. Chan;X. Z. Lu.Material sensitivity and formability prediction of warm-forming magnesium alloy sheets with experimental verification[J].The International Journal of Advanced Manufacturing Technology,20141/4(1/4):253-262. |
[2] | 刘迪;刘祖岩;王尔德.不同轧制工艺参数条件下AZ31镁合金孪晶和织构的演变规律及其对力学性能的影响[J].中国有色金属学报(英文版),2015(11):3585-3594. |
[3] | Agnew SR;Duygulu O.Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B[J].International Journal of Plasticity,20056(6):1161-1193. |
[4] | Maksoud, IA;Ahmed, H;Rodel, J.Investigation of the effect of strain rate and temperature on the deformability and microstructure evolution of AZ31 magnesium alloy[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,20091/2(1/2):40-48. |
[5] | HUANG Guang-sheng;LI Hong-cheng;SONG Bo;ZHANG Lei.Tensile properties and microstructure of AZ31B magnesium alloy sheet processed by repeated unidirectional bending[J].中国有色金属学报(英文版),2010(01):28-33. |
[6] | 黄光胜;张华;高孝云;宋波;张雷.织构化AZ31B镁合金在不同温度下的成形极限[J].中国有色金属学报(英文版),2011(4):836-843. |
[7] | 郑文涛;徐永超;张士宏;王忠堂.镁合金手机壳的温热液压成形实验及模拟研究[J].塑性工程学报,2006(5):92-95,109. |
[8] | 孟正华;黄尚宇;胡建华;胡婷婷.AZ31镁合金板材温热电磁成形能力[J].中国机械工程,2011(2):239-242. |
[9] | G. Ambrogio;L. Filice;G. L. Manco.Warm incremental forming of magnesium alloy AZ31[J].CIRP Annals,20081(1):257-260. |
[10] | Jianguang Liu;Qiucai Peng;Yan Liu;Zhongjin Wang.Viscous pressure bulging of aluminium alloy sheet at warm temperatures[J].Journal of Mechanical Science and Technology,200710(10):1505-1511. |
[11] | 高铁军;刘洋;陈鹏;王忠金.铝合金覆层板胀形过程及成形性能[J].中国有色金属学报(英文版),2015(4):1050-1055. |
[12] | Zhongjin Wang;Jianguang Liu.SECTIONAL FINITE ELEMENT ANALYSIS OF COUPLED DEFORMATION BETWEEN ELASTOPLASTIC SHEET METAL AND VISCO-ELASTOPLASTIC BODY[J].固体力学学报(英文版),2011(02):153-165. |
[13] | Viscous Inner and Outer Pressure Forming Method of Thin-walled Tube and Its Application[J].武汉理工大学学报(材料科学版)(英文版),2015(02):404-407. |
[14] | Jianguang Liu;Zhongjin Wang.Prediction of wrinkling and fracturing in viscous pressure forming (VPF) by using the coupled deformation sectional finite element method[J].Computational Materials Science,20102(2):381-389. |
[15] | Shi-Jian Yuan;Lan Hu;Zhu-Bin He;Bu-Gang Teng;Zhong-Ren Wang.Research on Two-Step Hydro-Bulge Forming of Ellipsoidal Shell with Larger Axis Length Ratio[J].哈尔滨工业大学学报(英文版),2013(03):93-98. |
[16] | Wang, Wurong;Huang, Lei;Tao, Kuangheng;Chen, Shichao;Wei, Xicheng.Formability and numerical simulation of AZ31B magnesium alloy sheet in warm stamping process[J].Materials & design,2015Dec.15(Dec.15):835-844. |
[17] | Kojiro Uenaka.Experimental study on concrete filled elliptical/oval steel tubular stub columns under compression[J].Thin-Walled structures,2014May(May):131-137. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%