欢迎登录材料期刊网

材料期刊网

高级检索

采用重力铸造(GC)、机械合金化(MA)和快速凝固(RS)3种工艺制备MgNi26合金。将所有样品在浓度为6 mol/L的KOH溶液中于80°C进行电化学氢化处理240 min。采用光学显微镜、扫描电镜、能量分散光谱及X射线衍射技术研究合金的组织和相组成。利用程序控温技术分析吸氢和脱氢过程。机械合金化法制备的MgNi26-MA合金样品所吸附的氢含量(约1.3%,质量分数)比重力铸造法制备的MgNi26-GC合金样品所吸附的氢含量高30倍。快速凝固法制备的MgNi26-RS合金样品所吸附的氢含量仅为0.1%。MgNi26-MA合金显示出最低的析氢温度。与工业纯MgH2相比,MgNi26-MA合金的分解温度至少降低了200°C。MgNi26-MA合金优异的氢化和脱氢性能归因于其有利的相组成和组织结构。

The MgNi26 alloy was prepared by three different methods of gravity casting (GC), mechanical alloying (MA) and rapid solidification (RS). All samples were electrochemically hydrided in a 6 mol/L KOH solution at 80 °C for 240 min. The structures and phase compositions of the alloys were studied using optical microscopy and scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction. A temperature-programmed desorption technique was used to measure the absorbed hydrogen and study the dehydriding process. The content of hydrogen absorbed by the MgNi26-MA (approximately 1.3%, mass fraction) was 30 times higher than that of the MgNi26-GC. The MgNi26-RS sample absorbed only 0.1%of hydrogen. The lowest temperature for hydrogen evolution was exhibited by the MgNi26-MA. Compared with pure commercial MgH2, the decomposition temperature was reduced by more than 200 °C. The favourable phase and structural composition of the MgNi26-MA sample were the reasons for the best hydriding and dehydriding properties.

参考文献

[1] Hai-Liang Chu;Shu-Jun Qiu;Qi-Feng Tian;Li-Xian Sun;Yao Zhang;Fen Xu;Ying-Ya Liu;Yan-Ni Qi;Mei-Qiang Fan.Effect of ball-milling time on the electrochemical properties of La-Mg-Ni-based hydrogen storage composite alloys[J].International journal of hydrogen energy,200718(18):4925-4932.
[2] D. Vojtěc.Nanocrystalline Nickel As A Material With High Hydrogen Storage Capacity[J].Materials Letters,200912(12):1074-1076.
[3] Won Ha;Ho-Shin Lee;Jeong-Il Youn;Tae-Whan Hong;Young-Jig Kim.Hydrogenation and degradation of Mg-10 wt% Ni alloy after cyclic hydriding-dehydriding[J].International journal of hydrogen energy,200712(12):1885-1889.
[4] V. KNOTEK;D. VOJTěCH.Mg-TM-Mm(TM=过渡金属,Mm=混合稀土)贮储氢合金的电化学性能[J].中国有色金属学报(英文版),2013(07):2047-2059.
[5] J. Cermak;L. Kral.Hydrogen diffusion in Mg-H and Mg-Ni-H alloys[J].Acta Materialia,200812(12):2677-2686.
[6] 张羊换;许胜;翟亭亭;杨泰;袁泽明;赵栋梁.添加Cu-Nd的Mg2Ni型纳米晶和非晶合金的吸氢动力学性能[J].中国有色金属学报(英文版),2014(11):3524-3533.
[7] 张羊换;韩忠刚;袁泽明;杨泰;祁焱;赵栋梁.Ni-MH电池用Mg-Y-Ni纳米晶和非晶合金的电化学性能[J].中国有色金属学报(英文版),2015(11):3736-3746.
[8] T.Spassov;U.Koster.Hydrogenation of amorphous and nanocrystalline Mg-based alloys[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,19991/2(1/2):243-250.
[9] J. Zhang;D.W. Zhou;L.P. He;P. Peng;J.S. Liu.First-principles investigation of Mg2Ni phase and high/low temperature Mg2NiH4 complex hydrides[J].The journal of physics and chemistry of solids,20091(1):32-39.
[10] R.V. Denys;A.B. Riabov;J.P. Maehlen.In situ synchrotron X-ray diffraction studies of hydrogen desorption and absorption properties of Mg and Mg-Mm-Ni after reactive ball milling in hydrogen[J].Acta materialia,200913(13):3989-4000.
[11] Varin RA;Czujko T;Wronski Z.Particle size, grain size and gamma-MgH2 effects on the desorption properties of nanocrystalline commercial magnesium hydride processed by controlled mechanical milling[J].Nanotechnology,200615(15):3856-3865.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%