欢迎登录材料期刊网

材料期刊网

高级检索

通过水热反应、化学镀和枝化生长三个步骤,制备了具有层级特征的异质型CuO@TiO2纳米线膜。研究表明,CuO@TiO2纳米线膜表现出了众多适合光电解水应用的优异物理特性,如层级表面、拓展的光学吸收范围、快速的界面电荷转移能力等。在可见光照和1.0 V偏压(相对可逆氢电极)条件下,未修饰的TiO2纳米线膜产生的光电流密度为0.12 mA/cm2。CuO@TiO2纳米线膜在相同条件下产生的光电流密度为0.56 mA/cm2。而且,计时电流法研究表明CuO@TiO2纳米线膜具有良好的稳定性。因此,所制备的CuO@TiO2纳米线膜是潜在的太阳能光电解水阳极材料。

A new kind of self-standing CuO@TiO2 nanowires (NWs) film with hierarchical feature was prepared by a three-step protocol consisting of hydrothermal reaction, electroless plating, and branched growth processes. This heterostructured CuO@TiO2 NWs film demonstrates the favorable physical properties in the photoelectrochemical cell (PEC) water splitting, such as the hierarchical surface, the extended optical absorption range, and the rapid interface charge transfer kinetics. Under the illumination of the simulated solar light, the pristine TiO2 NWs film only attains a photocurrent density of 0.12 mA/cm2 at 1.0 V versus reversible hydrogen electrode (RHE). Significantly, the CuO@TiO2 NWs film can yield a dramatically increased photocurrent density of 0.56 mA/cm2 at the same applied voltage. Furthermore, amperometric I?t tests of the CuO@TiO2 NWs film reveal satisfactory stability. All the above characteristics of this heterostructured CuO@TiO2 NWs film indicate its great potential in the water splitting applications with solar visible light.

参考文献

[1] Chen, X.;Shen, S.;Guo, L.;Mao, S.S..Semiconductor-based photocatalytic hydrogen generation[J].Chemical Reviews,201011(11):6503-6570.
[2] Frank E. Osterloh.Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting[J].Chemical Society Reviews,20136(6):2294-2320.
[3] Walter, M.G.;Warren, E.L.;McKone, J.R.;Boettcher, S.W.;Mi, Q.;Santori, E.A.;Lewis, N.S..Solar water splitting cells[J].Chemical Reviews,201011(11):6446-6473.
[4] 曹国剑;崔博;王文奇;唐光泽;冯义成;王丽萍.多孔钛表面TiO2纳米管的阳极氧化制备及光催化性能[J].中国有色金属学报(英文版),2014(8):2580-2586.
[5] Xuebo Cao;Zhufeng Lu;Lianwen Zhu.A new family of sunlight-driven bifunctional photocatalysts based on TiO2 nanoribbon frameworks and bismuth oxohalide nanoplates[J].Nanoscale,20143(3):1434-1444.
[6] Su-Il In;Dimitri D. Vaughn II;Raymond E. Schaak.Hybrid CuO-TiO_(2-x)N_x Hollow Nanocubes for Photocatalytic Conversion of CO2 into Methane under Solar Irradiation[J].Angewandte Chemie,201216(16):3915-3918.
[7] Jung, S.;Yong, K..Fabrication of CuO-ZnO nanowires on a stainless steel mesh for highly efficient photocatalytic applications[J].Chemical communications,20119(9):2643-2645.
[8] Xuebo Cao;Peng Chen;Yang Guo.Decoration of Textured ZnO Nanowires Array with CdTe Quantum Dots:Enhanced Light-Trapping Effect and Photogenerated Charge Separation[J].The journal of physical chemistry, C. Nanomaterials and interfaces,200851(51):20560-20566.
[9] Yun Zhou;Lianwen Zhu;Li Gu.Guided growth and alignment of millimetre-long titanate nanofibers in solution[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,201233(33):16890-16896.
[10] Xuebo Cao;Yun Zhou;Jun Wu.Self-assembled, robust titanate nanoribbon membranes for highly efficient nanosolid capture and molecule discrimination[J].Nanoscale,20138(8):3486-3495.
[11] YAO Mao-hai;TANG You-gen;ZHANG Li;YANG Hai-hua;YAN Jian-hui.Photocatalytic activity of CuO towards HER in catalyst from oxalic acid solution under simulated sunlight irradiation[J].中国有色金属学报(英文版),2010(10):1944-1949.
[12] Gonghu Li;Nada M. Dimitrijevic;Le Chen.Role of Surface/Interfacial Cu~(2+) Sites in the Photocatalytic Activity of Coupled CuO—TiO2 Nanocomposites[J].The journal of physical chemistry, C. Nanomaterials and interfaces,200848(48):19040-19044.
[13] Wu, N.;Wang, J.;Tafen, D.N.;Wang, H.;Zheng, J.-G.;Lewis, J.P.;Liu, X.;Leonard, S.S.;Manivannan, A..Shape-enhanced photocatalytic activity of single-crystalline anatase TiO_2 (101) nanobelts[J].Journal of the American Chemical Society,201019(19):6679-6685.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%