欢迎登录材料期刊网

材料期刊网

高级检索

基于254个岩爆破坏事件数据库,采用随机梯度提升方法(SGB)对岩爆破坏进行分类检验评估。SGB方法中选取5个可能性相关指标进行评价,包括应力条件因素、地下支护能力、地质构造以及岩爆发生场地质点峰值振动速度等指标。模型在评价过程中选取80%的原始数据进行建模并使用10倍交叉验证方法评估模型的性能,然后进行外部测试,用剩余20%的数据检验 SGB 模型的预测准确性。对于多类问题模型准确性分析采用分类准确率和科恩Kappa系数两种准确性方法。对岩爆破坏的数据准确性分析和Kappa系数的分析表明SGB模型分析法对于岩爆破坏预测是可靠的。

The database of 254 rockburst events was examined for rockburst damage classification using stochastic gradient boosting (SGB) methods. Five potentially relevant indicators including the stress condition factor, the ground support system capacity, the excavation span, the geological structure and the peak particle velocity of rockburst sites were analyzed. The performance of the model was evaluated using a 10 folds cross-validation (CV) procedure with 80%of original data during modeling, and an external testing set (20%) was employed to validate the prediction performance of the SGB model. Two accuracy measures for multi-class problems were employed: classification accuracy rate and Cohen’s Kappa. The accuracy analysis together with Kappa for the rockburst damage dataset reveals that the SGB model for the prediction of rockburst damage is acceptable.

参考文献

[1] T.R. Stacey;E. Rojas.A potential method of containing rockburst damage and enhancing safety using a sacrificial layer[J].Journal Of The South African Institute Of Mining & Metallurgy,20137(7):565-573.
[2] 史秀志;周健;董蕾;胡海燕;王怀勇;陈寿如.未确知测度模型在岩爆烈度分级预测中的应用[J].岩石力学与工程学报,2010(z1):2720-2726.
[3] Hani S. Mitri.Assessment of horizontal pillar burst in deep hard rock mines[J].International journal of risk assessment and management,20075(5):695-707.
[4] Mitri H.S.;Tang B..FE modelling of mining-induced energy release and storage rates[J].Journal Of The South African Institute Of Mining & Metallurgy,19992(2):103-110.
[5] Zhou Jian;Li Xibing;Shi Xiuzhi.Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines[J].Safety science,20124(4):629-644.
[6] ZHOU Jian;SHI Xiu-zhi;DONG Lei;HU Hai-yan;WANG Huai-yong.Fisher discriminant analysis model and its application for prediction of classification of rockburst in deep-buried long tunnel[J].煤炭学报(英文版),2010(2):144-149.
[7] 董陇军;李夕兵;彭康.岩爆等级预测的随机森林模型及应用[J].中国有色金属学报(英文版),2013(2):472-477.
[8] Y. Potvin.Strategies and tactics to control seismic risks in mines[J].Journal Of The South African Institute Of Mining & Metallurgy,20093(3):177-185.
[9] Marty Hudyma;Yves Henri Potvin.An Engineering Approach to Seismic Risk Management in Hardrock Mines[J].Rock Mechanics and Rock Engineering,20106(6):891-906.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%