对离子交换膜电解槽中电沉积钴的参数进行了优化研究,并探讨了阴极液成分、电流密度、温度等因素对电沉积钴的电流效率、单位能耗、质量的影响规律。阴极液为含氯化钴混合溶液,初始中间液为稀盐酸溶液,阳极液为硫酸溶液。采用阴离子交换膜将阴极液与中间液隔开,阳离子交换膜将阳极液与中间液隔开。结果表明:最佳实验条件为80 g/L 钴、20 g/L 硼酸、3 g/L 氟化钠、pH 4、电流密度250 A/m2、温度50°C,在该条件下电流效率为97.5%。中隔室可得到电化学再生的盐酸,酸浓度达到0.45 mol/L,实现了产酸抑氯同步化。
The process parameters were optimized for the electrodeposition of cobalt from cobalt chloride solution in the membrane electrolytic reactor. Effects of parameters such as catholyte composition, current density and temperature on the current efficiency, specific power consumption and quality of deposition were studied. The catholyte was a mixed solution of cobalt chloride, the initial middle electrolyte consisted of diluted hydrochloric acid, and the anolyte was sulfuric acid. An anion exchange membrane separated the catholyte from the middle electrolyte, and a cation exchange membrane separated the anolyte from the middle electrolyte. The results showed that a maximum current efficiency of 97.5% was attained under the optimum experimental condition of an catholyte composition of 80 g/L Co2+, 20 g/L H3BO3, 3 g/L NaF and pH of 4, at a cathode current density of 250 A/m2 and a temperature of 50 °C. HCl could be produced in the middle compartment electrochemically up to 0.45 mol/L.
参考文献
[1] | O. A. Surzhko.Electrolytic Deposition of a Cobalt-Lead Alloy with Magnetic Properties[J].Russian journal of applied chemistry,20132(2):182-185. |
[2] | Filippo Berto;Paolo Lazzarin;Pasquale Gallo.High-temperature fatigue strength of a copper-cobalt-beryllium alloy[J].The Journal of Strain Analysis for Engineering Design,20144(4):244-256. |
[3] | A. S. Kurlov;A. A. Rempel.Effect of Cobalt Powder Morphology on the Properties of WC-Co Hard Alloys[J].Inorganic materials,20139(9):889-893. |
[4] | M. O. Glushkova;M.V.Ved;M. D. Sakhnenko.CORROSION PROPERTIES OF COBALT-SILVER ALLOY ELECTROPLATES[J].Materials Science,20133(3):292-297. |
[5] | 刘大星.国内外钴的生产消费与技术进展[J].有色冶炼,2000(05):4-9. |
[6] | I. G. Sharma;P. Alex;A. C. Bidaye.Electrowinning of cobalt from sulphate solutions[J].Hydrometallurgy,20051/2(1/2):132-138. |
[7] | K.G. Mishra;P. Singh;D.M. Muir.Electrowinning of cobalt from sulphate solutions contaminated with organic impurities[J].Hydrometallurgy,20022/3(2/3):97-102. |
[8] | Kongstein OE;Haarberg GM;Thonstad J.Current efficiency and kinetics of cobalt electrodeposition in acid chloride solutions. Part I: The influence of current density, pH and temperature[J].Journal of Applied Electrochemistry,20076(6):669-674. |
[9] | Min Li;Zhaowen Wang;Ramana G. Reddy.Cobalt electrodeposition using urea and choline chloride[J].Electrochimica Acta,2014:325-331. |
[10] | J. H. HUANG;C. KARGL-SIMARD;A. M. ALFANTAZI.ELECTROWINNING OF COBALT FROM A SULFATE-CHLORIDE SOLUTION[J].Canadian Metallurgical Quarterly,20042(2):163-172. |
[11] | 武彦斌;王三反;周键;陈霞.治理钴电积中氯气污染的研究进展[J].有色金属(冶炼部分),2014(9):8-11. |
[12] | Santos, J.S.;Trivinho-Strixino, F.;Pereira, E.C..Investigation of Co(OH)_2 formation during cobalt electrodeposition using a chemometric procedure[J].Surface & Coatings Technology,20107(7):2585-2589. |
[13] | LU Jing;YANG Qi-hua;ZHANG Zhao.Effects of additives on nickel electrowinning from sulfate system[J].中国有色金属学报(英文版),2010(z1):97-101. |
[14] | B.C. TRIPATHY;P. SINGH;D.M. MUIR.Effect of Manganese(Il) and Boric Acid on the Electrowinning of Cobalt from Acidic Sulfate Solutions[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20013(3):395-399. |
[15] | N. Zech;D. Landolt.The influence of boric acid and sulfate ions on the hydrogen formation in Ni-Fe plating electrolytes[J].Electrochimica Acta,200021(21):3461-3471. |
[16] | El-Rehim SS Abd.Electroplating of a Co-Cu alloy from a citrate bath containing boric acid[J].Journal of Chemical Technology & Biotechnology,20003(3):237-244. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%