欢迎登录材料期刊网

材料期刊网

高级检索

采用扩散共渗方法在Nb?Ti?Si?Cr基超高温合金表面制备Zr?Y改性的硅化物渗层,对比研究基体合金和共渗层在室温和800°C 与 SiC 球对磨时的摩擦磨损性能。所制备的 Zr?Y 改性硅化物渗层主要由较厚的(Nb, X)Si2外层和较薄的(Ti, Nb)5Si4内层组成。共渗层的显微硬度明显高于基体合金。基体合金和共渗层在常温和800°C时的磨损率均随摩擦载荷的增加而增加,但在相同的摩擦条件下,共渗层的磨损率明显低于基体合金。Zr?Y改性硅化物渗层在室温和800°C时的磨损抗力均优于基体合金,能够为基体合金提供良好的保护。

Zr?Y jointly modified silicide coatings were prepared on an Nb?Ti?Si?Cr based ultrahigh temperature alloy by pack cementation process. The wear behaviors of both the base alloy and coatings were comparatively studied at room temperature and 800 °C using SiC balls as the counterpart. The Zr?Y jointly modified silicide coating is mainly composed of a thick (Nb,X)Si2 outer layer and a thin (Ti,Nb)5Si4 inner layer. The coatings possess much higher microhardness than the base alloy. The wear rates of both the base alloy and coatings increase with increasing the sliding loads. However, the coatings have much lower wear rates than the base alloy under the same sliding conditions. The coatings have superior anti-friction property, and can provide effective protection for the base alloy at both room temperature and 800 °C in air.

参考文献

[1] Won-Yong Kim;Hisao Tanaka;Akio Kasama.Microstructure and room temperature fracture toughness of Nb_(ss)/Nb_5Si_3 in situ composites[J].Intermetallics,20019(9):827-834.
[2] KWAI S. CHAN.The Fracture Toughness of Niobium-Based, In Situ Composites[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,19969(9):2518-2531.
[3] Yonosuke Murayama;Shuji Hanada.High temperature strength, fracture toughness and oxidation resistance of Nb-Si-Al-Ti multiphase alloys[J].Science and technology of advanced materials,20022(2):145-156.
[4] S. Knittel;P. Berthod;S. Mathieu;M. Vilasi.On the oxidation mechanism of niobium-base in situ composites[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2012Jul.(Jul.):181-192.
[5] Zelenitsas K;Tsakiropoulos P.Effect of Al, Cr and Ta additions on the oxidation behaviour of Nb-Ti-Si in situ composites at 800 degrees C[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20061-2(1-2):269-280.
[6] Chan KS..Alloying effects on fracture mechanisms in Nb-based intermetallic in-situ composites[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20020(0):513-522.
[7] Alma Vazquez;S.K. Varma.High-temperature oxidation behavior of Nb-Si-Cr alloys with Hf additions[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,201125(25):7027-7033.
[8] Jiangbo Sha;Hisatoshi Hirai;Tatsuo Tabaru;Akira Kitahara;Hidetoshi Ueno;Shuji Hanada.High-temperature strength and room-temperature toughness of Nb-W-Si-B alloys prepared by arc-melting[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20041/2(1/2):151-158.
[9] Qiao, Yanqiang;Guo, Xiping;Li, Xuan.Hot corrosion behavior of silicide coating on an Nb-Ti-Si based ultrahigh temperature alloy[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2015Feb.(Feb.):75-85.
[10] M. Vilasi;J. Steinmetz;B. Gaillard Allemand;B. Berton;P. Chereau.Protective coatings for niobium alloys[J].Journal of advanced materials,20002(2):53-57.
[11] Ryosuke O. Suzuki;Masayori Ishikawa;Katsutoshi Ono.NbSi_2 coating on niobium using molten salt[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,20021/2(1/2):280-285.
[12] 乔彦强;郭喜平.Ti-Nb-Si基超高温合金Si-Cr共渗抗氧化涂层的显微组织[J].中国有色金属学报,2009(11):1993-1999.
[13] Tian, XD;Guo, XP.Structure and oxidation behavior of Si-Y co-deposition coatings on an Nb silicide based ultrahigh temperature alloy prepared by pack cementation technique[J].Surface & Coatings Technology,20093(3):313-318.
[14] 李轩;郭喜平.催化剂对Nb-Ti-Si-Cr基超高温合金表面Si-Zr-Y共渗层组织的影响[J].金属学报,2012(11):1394-1402.
[15] Li, Xuan;Guo, Xiping;Qiao, Yanqiang.Structure and Oxidation Behavior of Zr-Y Modified Silicide Coatings Prepared on an Nb-Ti-Si-Cr Based Ultrahigh Temperature Alloy[J].Oxidation of Metals,20153/4(3/4):253-271.
[16] 金培鹏;陈庚;韩丽;王金辉.硼酸镁晶须增强6061铝基复合材料的干摩擦磨损行为[J].中国有色金属学报(英文版),2014(1):49-57.
[17] Zhenyu Zhang;Xinchun Lu;Baolei Han.Rare earth effect on the microstructure and wear resistance of Ni-based coatings[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20070(0):194-202.
[18] M. HAJIALI FINI;A. AMADEH.AZ91镁合金脉冲电沉积Ni-SiC纳米复合涂层的磨损与腐蚀性能[J].中国有色金属学报(英文版),2013(10):2914-2922.
[19] Chen Zishan, Li Hejun;Fu Qiangang;Chu Yanhui.Tribological behavior of SiC coating on C/C composites against SiC and WC under unlubricated sliding[J].CERAMICS INTERNATIONAL,20132(2):1765-1773.
[20] Zishan, C.;Hejun, L.;Qiangang, F..SiC wear resistance coating with added Ni, for carbon/carbon composites[J].Surface & Coatings Technology,2012:207-215.
[21] A.S. Anasyida.Dry sliding wear behaviour of Al-12Si-4Mg alloy with cerium addition[J].Materials & design,20101(1):365-374.
[22] 郭海生;郭喜平.热处理对定向凝固Nb-Ti-Si基超高温合金组织和显微硬度的影响[J].中国有色金属学报(英文版),2011(6):1283-1290.
[23] S. P. Sharma;D. K. Dwivedi;P. K. Jain.Effect of La{sub}2O{sub}3 addition on the microstructure, hardness and abrasive wear behavior of flame sprayed Ni based coatings[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,2009Pt.2(Pt.2):853-859.
[24] L. C. Jones;R. J. Llewellyn.Sliding abrasion resistance assessment of metallic materials for elevated temperature mineral processing conditions[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,200911(11):2010-2017.
[25] Anup Kumar Keshri;Arvind Agarwal.Wear Behavior of Plasma-Sprayed Carbon Nanotube-Reinforced Aluminum Oxide Coating in Marine and High-Temperature Environments[J].Journal of Thermal Spray Technology,20116(6):1217-1230.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%