欢迎登录材料期刊网

材料期刊网

高级检索

采用传统钢模铸造法和高冷却速率的水冷铜模喷铸法两种方法制备Mg?1Zn?0.5Ca合金,对合金的组织、力学性能和生物腐蚀性能进行对比研究。研究结果表明,提高冷却速度,合金的组织更均匀,晶粒尺寸显著细化。在3.5% NaCl溶液和模拟体液Hank’s溶液中采用动电位极化和浸泡失重测试合金的耐生物腐蚀性,结果显示高冷却速率下制备的合金在两种溶液中均具有较好的耐生物腐蚀性,其原因为提高冷却速率使合金组织更均匀,原电池腐蚀效应减弱。提高冷却速度,合金的屈服强度、抗拉强度和伸长率等力学性能得到提高。晶粒细化是其力学性能提高的主要原因。

Mg?1Zn?0.5Ca alloys were prepared by traditional steel mould casting and water-cooled copper mould injection casting at higher cooling rate. Microstructure, mechanical properties and bio-corrosion resistance of two alloys were contrastively investigated. Grain size reduces remarkably and microstructure becomes homogenous when raising cooling rate. The bio-corrosion behaviour in 3.5% sodium chloride solution (3.5% NaCl) and Hank’s solution at 37°C was investigated using electrochemical polarization measurement and the results indicate that the alloy prepared at higher cooling rates has better corrosion resistance in both types of solution. Further mass loss immersion test in Hank’s solution reveals the same result. The reason of corrosion resistance improvement is that raising cooling rate brings about homogeneous microstructure, which leads to micro-galvanic corrosion alleviation. The tensile test results show that yield strength, ultimate tensile strength and elongation are improved by raising cooling rate and the improvement is mainly due to grain refinement.

参考文献

[1] Witte F.The history of biodegradable magnesium implants: a review.[J].Acta biomaterialia,20105(5):1680-1692.
[2] J.KUB(A)SEK;D.VOJT(E)CH.可生物降解Mg-RE(RE=Gd,Y,Nd)合金的组织与腐蚀性能[J].中国有色金属学报(英文版),2013(05):1215-1225.
[3] Zhang, EL;Yin, DS;Xu, LP;Yang, L;Yang, K.Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application[J].Materials science & engineering, C. Biomimetic and supramolecular systems,20093(3):987-993.
[4] Li Z;Gu X;Lou S;Zheng Y.The development of binary Mg-Ca alloys for use as biodegradable materials within bone.[J].Biomaterials,200810(10):1329-1344.
[5] Shaoxiang Zhang;Jianan Li;Yang Song;Changli Zhao;Xiaonong Zhang;Chaoying Xie;Yan Zhang;Hairong Tao;Yaohua He;Yao Jiang;Yujun Bian.In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg-Zn alloy[J].Materials science & engineering, C. Biomimetic and supramolecular systems,20096(6):1907-1912.
[6] Zhang S;Zhang X;Zhao.Research on an Mg-Zn alloy as a degradable biomaterial.[J].Acta biomaterialia,20102(2):626-640.
[7] Zander, Daniela;Zumdick, Naemi A..Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg-Ca-Zn alloys[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2015Apr.(Apr.):222-233.
[8] L. Geng;B.P. Zhang;A.B. Li;C.C. Dong.Microstructure And Mechanical Properties Of Mg-4.0zn-0.5ca Alloy[J].Materials Letters,20095(5):557-559.
[9] Hamid Reza Bakhsheshi-Rad;Mohd Hasbullah Idris;Mohammed Rafiq Abdul Kadir;Mohammadreza Daroonparvar.氟化处理对植入材料Mg-Ca二元合金腐蚀行为的影响[J].中国有色金属学报(英文版),2013(03):699-710.
[10] Gu XN;Zheng W;Cheng Y.A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate.[J].Acta biomaterialia,20097(7):2790-2799.
[11] Wang HX;Guan SK;Wang X;Ren CX;Wang LG.In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process.[J].Acta biomaterialia,20105(5):1743-1748.
[12] 王敬丰;黄崧;郭胜锋;魏怡芸;潘复生.冷却速率对Mg-Zn-Ca合金显微组织、力学性能及腐蚀性能的影响[J].中国有色金属学报(英文版),2013(7):1930-1935.
[13] Michiaki Yamasaki;Shogo Izumi;Yoshihito Kawamura;Hiroki Habazaki.Corrosion and passivation behavior of Mg-Zn-Y-Al alloys prepared by cooling rate-controlled solidification[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,201119(19):8258-8267.
[14] Debao Liu;Yichi Liu;Yan Huang;Rong Song;Minfang Chen.Effects of solidification cooling rate on the corrosion resistance of Mg-Zn-Ca alloy[J].自然科学进展(英文版),2014(5):452-457.
[15] Tatiana V. Larionova;Won-Wook Park;Bong-Sun You.A ternary phase observed in rapidly solidified Mg-Ca-Zn alloys[J].Scripta materialia,20011(1):7-12.
[16] G. Levi;S. Avraham;A. Zilberov.Solidification, solution treatment and age hardening of Mg-1.6 wt. percent Ca-3.2 wt. percent Zn alloy[J].Acta materialia,20062(2):523-530.
[17] Erlin Zhang;Lei Yang.Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,20081/2(1/2):111-118.
[18] H.R. Bakhsheshi-Rad;M.R. Abdul-Kadir;M.H. Idris;S. Farahany.Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg-0.5Ca-xZn alloys[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2012Nov.(Nov.):184-197.
[19] G.R. Argade;K. Kandasamy;S.K. Panigrahi;R.S. Mishra.Corrosion behavior of a friction stir processed rare-earth added magnesium alloy[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2012may(may):321-326.
[20] Hideyuki Kuwahara;Yousef Al-Abdullat;Naoko Mazaki.Precipitation of Magnesium Apatite on Pure Magnesium Surface during Immersing in Hank's Solution[J].Materials transactions,20017(7):1317-1321.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%