欢迎登录材料期刊网

材料期刊网

高级检索

通过X射线衍射仪、光学显微镜和透射电镜研究Mg?5.51Zn?0.49Zr镁合金在热压缩实验中动态再结晶的位错机制。结果表明,当应变速率为1×10?3 s?1时,由于位错攀移沿单一方向滑动,合金出现连续动态再结晶;当热压缩温度达到350°C、应变速率为1×10?2s?1时,由于位错发生滑移和攀移,合金出现连续动态再结晶;当热压缩温度达到400°C时,由于亚晶界弓出,合金出现不连续动态再结晶;当应变速率为1×100s?1时,合金出现连续动态再结晶是由于先导位错在堆积前发生攀移,导致位错在堆积过程中重新排列,形成位错差。一般来说,当应变速率增加时,位错攀移的主要影响机制由空位迁移转变为堆积前先导位错的压应力作用。

Dislocation mechanism operating in dynamic recrystallization (DRX) during hot compression of Mg?5.51Zn?0.49Zr alloy was investigated by X-ray diffraction, optical microscopy and transmission electron microscopy. The results showed that the continuous DRX occurred at a low strain rate of 1×10?3s?1, which was associated with the operation of the single gliding dislocation climbing. At the intermediate strain rate of 1×10?2s?1, the continuous DRX was associated with the climbing of the gliding dislocation array as deformed at an elevated temperature of 350 °C, and in contrast, the discontinuous DRX was observed and associated with the bulging of subgrain boundaries as the deformation temperature was raised to 400 °C. The continuous DRX was associated with the climbing of the leading dislocation ahead of pile-ups, and resultant rearrangement of misorientated flat dislocation pile-ups as the strain rate was increased to 1×100s?1. It is suggested that the mechanism predominating the dislocation climbing was changed from the vacancy migration to the stress acting on the leading dislocation ahead of the pile-up as the strain rate was gradually increased.

参考文献

[1] S. Spigarelli;M. El Mehtedi;M. Cabibbo;E. Evangelista;J. Kaneko;A. Jaeger;V. Gartnerova.Analysis of high-temperature deformation and microstructure of an AZ31 magnesium alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20071/2(1/2):197-201.
[2] W.J. Kim;J.D. Park;W.Y. Kim.Effect of differential speed rolling on microstructure and mechanical properties of an AZ91 magnesium alloy[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,20081/2(1/2):289-293.
[3] E. Cerri;P. Leo;P. P. De Marco.Hot compression behavior of the AZ91 magnesium alloy produced by high pressure die casting[J].Journal of Materials Processing Technology,20071/3(1/3):97-106.
[4] Barnett MR.Twinning and the ductility of magnesium alloys Part I: "Tension" twins[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20071-2(1-2):1-7.
[5] Barnett MR.Twinning and the ductility of magnesium alloys Part II. "Contraction" twins[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20071-2(1-2):8-16.
[6] Proust G;Tome CN;Kaschner GC.Modeling texture, twinning and hardening evolution during deformation of hexagonal materials[J].Acta materialia,20076(6):2137-2148.
[7] L. Jiang;J.J. Jonas;R.K. Mishra;A.A. Luo;A.K. Sachdev;S. Godet.Twinning and texture development in two Mg alloys subjected to loading along three different strain paths[J].Acta materialia,200711(11):3899-3910.
[8] Cottam R;Robson J;Lorimer G;Davis B.Dynamic recrystallization of Mg and Mg-Y alloys: Crystallographic texture development[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20081/2(1/2):375-382.
[9] El-Morsy, A;Ismail, A;Waly, M.Microstructural and mechanical properties evolution of magnesium AZ61 alloy processed through a combination of extrusion and thermomechanical processes[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,20081/2(1/2):528-533.
[10] Yang Z;Guo YC;Li JP;He F;Xia F;Liang MX.Plastic deformation and dynamic recrystallization behaviors of Mg-5Gd-4Y-0.5Zn-0.5Zr alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20081/2(1/2):487-491.
[11] YANG Xu-yue;JI Ze-sheng;H. MIURA;T. SAKAI.Dynamic recrystallization and texture development during hot deformation of magnesium alloy AZ31[J].中国有色金属学会会刊(英文版),2009(01):55-60.
[12] 何运斌;潘清林;陈琴;张志野;刘晓艳;李文斌.ZK60镁合金热变形过程中的应变强化与动态再结晶行为[J].中国有色金属学报(英文版),2012(2):246-254.
[13] F BERGE;L KRGER;H OUAZIZ;C ULLRICH.温度和应变速率对双辊铸轧、轧制和热处理态AZ31镁合金流动应力行为的影响[J].中国有色金属学报(英文版),2015(01):1-13.
[14] 徐岩;胡连喜;孙宇.铸态AZ91D镁合金的动态再结晶动力学[J].中国有色金属学报(英文版),2014(6):1683-1689.
[15] 史宝良;罗天骄;王晶;杨院生.Mg-6Zn-1Al-0.3Mn 镁合金的热压缩变形行为及变形组织[J].中国有色金属学报(英文版),2013(9):2560-2567.
[16] JIAN Wei-wei;KANG Zhi-xin;LI Yuan-yuan.Effect of hot plastic deformation on microstructure and mechanical property of Mg-Mn-Ce magnesium alloy[J].中国有色金属学会会刊(英文版),2007(06):1158-1163.
[17] Oleg Sitdikov;Rustam Kaibyshev.Dynamic recrystallization in pure magnesium[J].Materials transactions,20019(9):1928-1937.
[18] Yasumasa Chino;Motohisa Kado;Mamoru Mabuchi.Compressive deformation behavior at room temperature -- 773 K in Mg-0.2 mass percent (0.035at. percent)Ce alloy[J].Acta materialia,20083(3):387-394.
[19] A. GALIYEV;R. KAIBYSHEV;G. GOTTSTEIN.CORRELATION OF PLASTIC DEFORMATION AND DYNAMIC RECRYSTALLIZATION IN MAGNESIUM ALLOY ZK60[J].Acta materialia,20017(7):1199-1207.
[20] J.A. del Valle;O.A. Ruano.Influence of texture on dynamic recrystallization and deformation mechanisms in rolled or ECAPed AZ31 magnesium alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20081/2(1/2):473-480.
[21] Juan Liu;Zhenshan Cui;Congxing Li.Modelling of flow stress characterizing dynamic recrystallization for magnesium alloy AZ31B[J].Computational Materials Science,20083(3):375-382.
[22] Srinivasan N;Prasad YVRK;Rao PR.Hot deformation behaviour of Mg-3Al alloy - A study using processing map[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20081/2(1/2):146-156.
[23] C.Y. Wang;X.J. Wang;H. Chang;K. Wu;M.Y. Zheng.Processing maps for hot working of ZK60 magnesium alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20071/2(1/2):52-58.
[24] Mirzadeh, Hamed.Constitutive modeling and prediction of hot deformation flow stress under dynamic recrystallization conditions[J].Mechanics of materials,2015Jun.(Jun.):66-79.
[25] Mirzadeh, H.;Roostaei, M.;Parsa, M. H.;Mahmudi, R..Rate controlling mechanisms during hot deformation of Mg-3Gd-1Zn magnesium alloy: Dislocation glide and climb, dynamic recrystallization, and mechanical twinning[J].Materials & design,2015Mar.(Mar.):228-231.
[26] Wang, Yannan;Xin, Yunchang;Yu, Huihui;Lv, Liangchen;Liu, Qing.Formation and microstructure of shear bands during hot rolling of a Mg-6Zn-0.5Zr alloy plate with a basal texture[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2015:147-154.
[27] Zhiyi Liu;Song Bai;SukBong Kang.Low-temperature dynamic recrystallization occurring at a high deformation temperature during hot compression of twin-roll-cast Mg-5.51Zn-0.49Zr alloy[J].Scripta materialia,20096(6):403-406.
[28] A. Jain;S.R. Agnew.Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet[J].Materials Science & Engineering. A, Structural Materials: Properties, Microstructure and Processing,20071-2(1-2):29-36.
[29] L.M. Dougherty;I.M. Robertson;J.S. Vetrano.Direct observation of the behavior of grain boundaries during continuous dynamic recrystallization in an Al-4Mg-O.3Sc alloy[J].Acta materialia,200315(15):4367-4378.
[30] S.X. Song;J.A. Horton;N.J. Kim.Deformation behavior of a twin-roll-cast Mg-6Zn-0.5Mn-0.3Cu-0.02Zr alloy at intermediate temperatures[J].Scripta materialia,20075(5):393-395.
[31] Peng, WP;Li, PJ;Zeng, P;Lei, LR.Hot deformation behavior and microstructure evolution of twin-roll-cast Mg-2.9Al-0.9Zn alloy: A study with processing map[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,20081/2(1/2):173-178.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%