采用粉末冶金技术添加造孔剂制备生物医学用高孔隙度Ti-Co合金.Ti合金因具有高的熔点和氧亲和力.而难以进行直接加工.添加Co能降低其熔点,因而Ti-Co合金能在更低的温度进行烧结.在人工唾液中考察制备的Ti-Co合金样品的电化学腐蚀行为.研究合金的Co含量、人工唾液的pH值和氟离子浓度升高对样品的电化学腐蚀性能的影响对样品的显微组织和力学性能进行测试.电化学阻抗谱分析结果表明,样品的耐蚀性随氟离子浓度升高和pH值降低而降低.根据Mott-Schottky分析,缺陷密度随氟离子浓度的增加和人工唾液pH值的降低而增加.
参考文献
[1] | Niu Wenjuan;Bai Chenguang;Qiu GuiBao;Wang Qiang.Processing and properties of porous titanium using space holder technique[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20091/2(1/2):148-151. |
[2] | Mutlu, I.;Oktay, E..Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments[J].Materials science & engineering, C. Biomimetic and supramolecular systems,20133(3):1125-1131. |
[3] | Gibson LJ.Biomechanics of cellular solids[J].Journal of Biomechanics,20053(3):377-399. |
[4] | Wang,R.;Welsch,G..Evaluation of an experimental Ti-Co alloy for dental restorations[J].Journal of biomedical materials research, Part B. Applied biomaterials,20138(8):1419-1427. |
[5] | M. Metikos-Hukovic;R. Babic.Passivation and corrosion behaviours of cobalt and cobalt-chromium-molybdenum alloy[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,20079(9):3570-3579. |
[6] | Wilson Correa Rodrigues;Luiz Roberto Broilo;Lirio Schaeffer.Powder metallurgical processing of Co-28%Cr-6%Mo for dental implants: Physical, mechanical and electrochemical properties[J].Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems,20113(3):233-238. |
[7] | Daniel Mared;Romeu Chelariu;Ioan Dan;Doina-Margareta Gordin;Thierry Gloriant.Corrosion behaviour of β-Ti20Mo alloy in artificial saliva[J].Journal of Materials Science. Materials in Medicine,201011(11):2907-2913. |
[8] | Mohit Sharma;A. V. Ramesh Kumar;Nirbhay Singh;Nidhi Adya;Bobin Saluja.Electrochemical Corrosion Behavior of Dental/Implant Alloys in Artificial Saliva[J].Journal of Materials Engineering and Performance,20085(5):695-701. |
[9] | Ho, W.-F.;Wu, S.-C.;Lin, C.-W.;Hsu, S.-K.;Hsu, H.-C..Electrochemical behavior of Ti-20Cr-X alloys in artificial saliva containing fluoride[J].Journal of Applied Electrochemistry,20113(3):337-343. |
[10] | Lin FH;Hsu YS;Lin SH;Sun JS.The effect of Ca/P concentration and temperature of simulated body fluid on the growth of hydroxyapatite coating on alkali-treated 316L stainless steel.[J].Biomaterials,200219(19):4029-4038. |
[11] | Lin FH;Hsu YS;Lin SH;Chen TM.The growth of hydroxyapatite on alkaline treated Ti-6Al-4V soaking in higher temperature with concentrated Ca2+/HPO42- simulated body fluid[J].Materials Chemistry and Physics,20041(1):24-30. |
[12] | Wislei R. Osorio;Alessandra Cremasco;Protasio N. Andrade;Amauri Garcia;Rubens Caram.Electrochemical behavior of centrifuged cast and heat treated Ti-Cu alloys for medical applications[J].Electrochimica Acta,20103(3):759-770. |
[13] | Robin, A;Meirelis, JP.Influence of fluoride concentration and pH on corrosion behavior of titanium in artificial saliva[J].Journal of Applied Electrochemistry,20074(4):511-517. |
[14] | Jaroslav Fojt;Ludek Joska;Jaroslav Malek.Corrosion behaviour of porous Ti-39Nb alloy for biomedical applications[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2013Jun.(Jun.):78-83. |
[15] | F.F. Cardoso;A. Cremasco;R.J. Contieri;E.S.N. Lopes;C.R.M. Afonso;R. Caram.Hexagonal martensite decomposition and phase precipitation in Ti-Cu alloys[J].Materials & design,20118/9(8/9):4608-4613. |
[16] | Mutlu, I..Sinter-coating method for the production of TiN-coated titanium foam for biomedical implant applications[J].Surface & Coatings Technology,2013:396-402. |
[17] | I. Gurappa.Characterization of different materials for corrosion resistance under simulated body fluid conditions[J].Materials Characterization,20021(1):73-79. |
[18] | Gotoh E.Comparison of metal release from various metallic biomaterials in vitro.[J].Biomaterials,20051(1):11-21. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%