对2017铝合金进行搅拌摩擦焊接,表述SwiR硬化规律.采用面心复合设计方法进行焊接接头的拉伸实验设计.采用基于最小二乘法和响应面法的2种模型评估搅拌摩擦焊各焊接因素对硬化参数的影响.采用到有限元程序Abaqus来模拟焊接接头拉伸测试结果.相对平均偏差判据结果表明,实验结果和模拟结果吻合较好.这些结果能用于实验多目标优化,实行具体焊接或完成搅拌摩擦焊接零件成形过程中塑性变形的数值模拟,如液压成形、弯曲度和锻造.
An experimental study was undertaken to express the hardening Swift law according to fiictien stir welding (FSW)aluminum alloy 2017.Tensile tests of welded joints were run in accordance with face centered composite design.Two types of identified models based on least square method and response surface method were used to assess the contribution of FSW independent factors on the hardening parameters.These models were introduced into finite-element code "Abaqus" to simulate tensile tests of welded joints.The relative average deviation criterion,between the experimental data and the numerical simulations of tension-elongation of tensile tests,shows good agreement between the experimental results and the predicted hardening models.These results can be used to perform multi-criteria optimization for carrying out specific welds or conducting numerical simulation of plastic deformation of forming process of FSW parts such as hydroforming,bending and forging.
参考文献
[1] | THOMAS W M;NICHOLAS E D;NEEDHAM J C;MURCH M G TEMPLE-SMITH P DAWES C J .Friction stir butt welding[P].PCT/GB92/02203,1991. |
[2] | Xue, P.;Ni, D.R.;Wang, D.;Xiao, B.L.;Ma, Z.Y. .Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al-Cu joints[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011(13/14):4683-4689. |
[3] | H.J. Liu;H.J.Zhang;L.Yu .Effect of welding speed on microstructures and mechanical properties of underwater friction stir welded 2219 aluminum alloy[J].Materials & design,2011(3):1548-1553. |
[4] | Mishra RS;Ma ZY .Friction stir welding and processing[J].Materials Science & Engineering, R. Reports: A Review Journal,2005(1/2):III-0. |
[5] | William J. Arbegast .A flow-partitioned deformation zone model for defect formation during friction stir welding[J].Scripta materialia,2008(5):372-376. |
[6] | LEWIS N P.Metal cutting theory and friction stir welding tool design[A].University of ALABAMA,NASA/MSFC Directorate:Engineering (ED-33),2002 |
[7] | ARBEGAST W J.Modeling friction stir welding joining as a metalworking process,hot deformation of aluminum alloys Ⅲ[A].San Diego,California,USA,2003:313-327. |
[8] | ARTHUR C N Jr .Metal flow in friction stir welding[NASA marshall space flight center,EM30.Huntsville,AL 35812][R]. |
[9] | R. W. Fonda;J. F. Bingert;K. J. Colligan .Development of grain structure during friction stir welding[J].Scripta materialia,2004(3):243-248. |
[10] | R. Nandan;T. DebRoy;H.K.D.H. Bhadeshia .Recent advances in friction-stir welding - Process, weldment structure and properties[J].Progress in materials science,2008(6):980-1023. |
[11] | Lockwood WD.;Tomaz B.;Reynolds AP. .Mechanical response of friction stir welded AA2024: experiment and modeling[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):348-353. |
[12] | Hanadi G. Salem;Anthony P. Reynolds;Jed S. Lyons .Microstructure and retention of superplasticity of friction stir welded superplastic 2095 sheet[J].Scripta materialia,2002(5):337-342. |
[13] | Lockwood WD.;Reynolds AP. .Simulation of the global response of a friction stir weld using local constitutive behavior[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):35-42. |
[14] | Michael A. Sutton;Bangcheng Yang;Anthony P. Reynolds;Junhui Yan .Banded microstructure in 2024-T351 and 2524-T351 aluminum friction stir welds Part Ⅱ. Mechanical characterization[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(1/2):66-74. |
[15] | Zhang HW;Zhang Z;Chen JT .The finite element simulation of the friction stir welding process[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(1/2):340-348. |
[16] | Z. Zhang;H. W. Zhang .Numerical studies on controlling of process parameters in friction stir welding[J].Journal of Materials Processing Technology,2009(1):241-270. |
[17] | G. Buffa;L. Fratini;R. Shivpuri .Finite element studies on friction stir welding processes of tailored blanks[J].Computers & structures,2008(1/2):181-189. |
[18] | SWIFT H W .Plastic instability under plane stress[J].Journal of the Mechanics and Physics of Solids,1952,1:1-18. |
[19] | MONTGOMERY D C.Design and analysis of experiments[M].Fiflh Edition.New York:John Wiley & Sons,2001:684. |
[20] | MYERS R H;MONTGOMERY D C;ANDERSON-COOK C M.Response surface methodology:Process and product optimization using designed experiment[M].New York:John Wiley and Sons,Inc,2009:680. |
[21] | VIJAY S J;MURUGAN N .Influence of tool pin profile on the metallurgical and mechanical properties of friction stir welded Al-10% TiB2 metal matrix composite[J].Materials & Design,2010,31:3585-3589. |
[22] | ELANGOVAN K;BALASUBRAMANIAN V .Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminum alloy[J].Materials & Design,2008,29:362-373. |
[23] | PALANIVEL R;KOSHY MATHEWS P;MURUGAN N .Development of mathematical model to predict the mechanical properties of friction stir welded AA6351 aluminum alloy[J].Journal of Engineering Science and Technology Review,2011,4(01):25-31. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%