欢迎登录材料期刊网

材料期刊网

高级检索

This review focused on rare-earth elements containing inorganic semiconductor photocatalysts for efficient solar energy conversion. We also summarized the recent progress in the modification of the transition metal oxides and mixed oxides with rare earth ions. In the first section, we surveyed a variety of rare-earth elements modified TiO2 photocatalysts. Attributed to the modifica-tion with rare-earth elements, phase transformation of TiO2 from anatase to rutile was inhibited. Furthermore, the light-absorbing property of the TiO2 modified with rare-earth elements was also enhanced. In the second section, we summarized the effects of rare-earth elements on the modification of transition metal mixed oxides. It was believed that the corner-shared octahedral units in the form of networks, chains and slabs within the mixed oxide lattice were essential for the enhancement of the photocatalytic activity. In the last section, the strategy for the design of NIR or IR response upconversion composite photocatalysts was also discussed.

参考文献

[1] Nozik A J, Miller J. Introduction to solar photon conver-sion. Chem. Rev., 2010, 110:6443.,2010.
[2] Chen X B, Shen S H, Guo L J, Mao S S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev., 2010, 110:6503.,2010.
[3] Fujishima A, Honda K. Electrochemical photolysis of wa-ter at a semiconductor electrode. Nature, 1972, 238:37.,1972.
[4] Chen C C, Ma W H, Zhao J C. Semiconductor-mediated photodegradation of pollutants under visible-light irradia-tion. Chem. Soc. Rev., 2010, 39:4206.,2010.
[5] Thompson T L, Yates J T Jr. Surface science studies of the photoactivation of TiO2 new photochemical processes. Chem. Rev., 2006, 106:4428.,2006.
[6] Tachikawa T, Fujitsuka M, Majima T. Mechanistic insight into the TiO2 photocatalytic reactions:design of new photocatalysts. J. Phys. Chem. C, 2007, 111:5259.,2007.
[7] Kamat P V. Photochemistry on nonreactive and reactive surfaces. Chem. Rev., 1993, 93:267.,1993.
[8] Chen X B, Liu L, Yu P Y, Mao S S. Increasing solar ab-sorption for photocatalysis with black hydrogenated tita-nium dioxide nanocrystals. Science, 2011, 331:746.,2011.
[9] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visi-ble-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293:269.,2001.
[10] Sun J X, Chen G, Li Y X, Jin R C, Wang Q, Pei J. Novel(Na, K)TaO3 single crystal nanocubes:molten salt synthe-sis, invariable energy level doping and excellent photo-catalytic performance. Energy Environ. Sci., 2011, 4:4052.,2011.
[11] Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev., 2009, 38:253.,2009.
[12] Pasternak S, Paz Y. On the similarity and dissimilarity between photocatalytic water splitting and photocatalytic degradation of pollutants. ChemPhysChem, 2013, 14:2059.,2013.
[13] Kato H, Asakura K, Kudo A. Highly efficient water split-ting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanos-tructure. J. Am. Chem. Soc., 2003, 125:3082.,2003.
[14] Weber A S, Grady A M, Koodali R T. Lanthanide modi-fied semiconductor photocatalysts. Catal. Sci. Technol., 2012, 2:683.,2012.
[15] Huang X Y, Han S Y, Huang W, Liu X G. Enhancing solar cell efficiency:the search for luminescent materials as spectral converters. Chem. Soc. Rev., 2013, 42:173.,2013.
[16] Bunzli J C, Piguet C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev., 2005, 34:1048.,2005.
[17] Peng S Q, Huang Y H, Li Y X. Rare earth doped TiO2-CdS and TiO2-CdS composites with improvement of photocatalytic hydrogen evolution under visible light irra-diation. Mater. Sci. Semicond. Process, 2013, 16:62.,2013.
[18] Li Z X, Shi F B, Zhang T, Wu H S, Sun L D, Yan C H. Ytterbium stabilized ordered mesoporous titania for near-infrared photocatalysis. Chem. Commun., 2011, 47:8109.,2011.
[19] Abe R, Higashi M, Zou Z, Sayama K, Abe Y, Arakawa H. Photocatalytic water splitting into H2 and O2 over R3TaO7 and R3NbO7(R=Y, Yb, Gd, La):effect of crystal structure on photocatalytic activity. J. Phys. Chem. B, 2004, 108:811.,2004.
[20] Xi G C, Ye J H. Synthesis of hierarchical macro/mesoporous solid-solution photocatalysts by a polymeriza-tion-carbonization-oxidation route:the case of Ce0.49Zr0.37Bi0.14O1.93. Chem. Eur. J., 2010, 16:8719.,2010.
[21] Yao W F, Huang C P, Ye J H. Hydrogen production and characterization of MLaSrNb2NiO9(M=Na, Cs, H)based photocatalysts. Chem. Mater., 2010, 22:1107.,2010.
[22] Nashim A, Parida K M. Novel Sm2Ti2O7/SmCrO3 hetero-junction based composite photocatalyst for degradation of Rhodamine 6G dye. Chem. Eng. J., 2013, 215-216:608.,2013.
[23] Lin J, Yu J C. An investigation on photocatalytic activities of mixed TiO2 rare earth oxides for the oxidation of ace-tone in air. J. Photochem. Photobiol. A, 1998, 116:63.,1998.
[24] Li J H, Yang X, Yu X D, Xu L L, Kang W L, Yan W H, Gao H F, Liu Z H, Guo Y H. Rare earth oxide-doped tita-nia nanocomposites with enhanced photocatalytic activity towards the degradation of partially hydrolysis poly-acrylamide. Appl. Surf. Sci., 2009, 255:3731.,2009.
[25] Jian Z C, Pu Y Y, Fang J Z, Ye Z P. Microemulsion syn-thesis of nanosized TiO2 particles doping with rare-earth and their photocatalytic activity. Photochem. Photobiol., 2010, 86:1016.,2010.
[26] Du P, Buenolopez A, Verbaas M, Almeida A, Makkee M, Moulijn J, Mul G. The effect of surface OH-population onthe photocatalytic activity of rare earth-doped P25-TiO2 in methylene blue degradation. J. Catal., 2008, 260:75.,2008.
[27] Lee D Y, Kim B, Cho N, Oh Y. Electrospun Er3+-TiO2 nanofibrous films as visible light induced photocatalysts. Curr. Appl. Phys., 2011, 11:S324.,2011.
[28] Liu B S, Zhao X J, Zhang N Z, Zhao Q N, He X, Feng J Y. Photocatalytic mechanism of TiO2-CeO2 films prepared by magnetron sputtering under UV and visible light. Surf. Sci., 2005, 595:203.,2005.
[29] Wang Y Q, Jiang X D, Pan C X.“In situ”preparation of a TiO2/Eu2O3 composite film upon Ti alloy substrate by mi-cro-arc oxidation and its photocatalytic property. J. Alloys Compd., 2012, 538:16.,2012.
[30] Zhou W, Zheng Y H, Wu G H. Novel luminescent RE/TiO2(RE=Eu, Gd)catalysts prepared by in-situation sol-gel approach construction of multi-functional precur-sors and their photo or photocatalytic oxidation properties. Appl. Surf. Sci., 2006, 253:1387.,2006.
[31] Anandan S, Ikuma Y, Murugesan V. Highly active rare-earth-metal La-doped photocatalysts:fabrication, charac-terization, and their photocatalytic activity. Int. J. Pho-toenergy., 2012, 2012:1.,2012.
[32] Liu J H, Yang R, Li S M. Synthesis and photocatalytic ac-tivity of TiO2/V2O5 composite catalyst doped with rare earth ions. J. Rare Earths, 2007, 25:173.,2007.
[33] Zhang X J, Chen W B, Lin Z D, Yao J, Tan S Z. Prepara-tion and photocatalysis properties of bacterial cellulose/TiO2 composite membrane doped with rare earth elements. Synth. React. Inorg., Metal-Org., Nano-Met. Chem., 2011, 41:997.,2011.
[34] Bingham S, Daoud W A. Recent advances in making nano-sized TiO2 visible-light active through rare-earth metal doping. J. Mater. Chem., 2011, 21:2041.,2011.
[35] He Z Q, Xu X, Song S, Xie L, Tu J J, Chen J M, Yan B. A visible light-driven titanium dioxide photocatalyst codoped with lanthanum and iodine:an application in the degrada-tion of oxalic acid. J. Phys. Chem. C, 2008, 112:16431.,2008.
[36] Zhu J J, Xie J M, Chen M, Jiang D L, Wu D. Low tem-perature synthesis of anatase rare earth doped titania-silica photocatalyst and its photocatalytic activity under so-lar-light. Colloids Surf. A, 2010, 355:178.,2010.
[37] Parida K M, Sahu N. Visible light induced photocatalytic activity of rare earth titania nanocomposites. J. Mol. Catal. A:Chem., 2008, 287:151.,2008.
[38] Xu A W, Gao Y, Liu H Q. The preparation, characteriza-tion, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. J. Catal., 2002, 207:151.,2002.
[39] Lin L, Chai Y C, Yang Y C, Wang X, He D N, Tang Q W, Ghoshroy S. Hierarchical Gd-La codoped TiO2 micro-spheres as robust photocatalysts. Int. J. Hydrogen Energy, 2013, 38:2634.,2013.
[40] El-Bahy Z M, Ismail A A, Mohamed R M. Enhancement of titania by doping rare earth for photodegradation of or-ganic dye(Direct Blue). J. Hazard. Mater., 2009, 166:138.,2009.
[41] Carp O. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem., 2004, 32:33.,2004.
[42] Hanaor D, Sorrell C. Review of the anatase to rutile phase transformation. J. Mater. Sci., 2010, 46:855.,2010.
[43] Jing L Q, Sun X J, Xin B F, Wang B Q, Cai W M, Fu H G. The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity. J. Solid State Chem., 2004, 177:3375.,2004.
[44] Baiju K V, Periyat P, Shajesh P, Wunderlich W, Manjumol K A, Smitha V S, Jaimy K B, Warrier K G K. Mesoporous gadolinium doped titania photocatalyst through an aqueous sol-gel method. J. Alloys Compd., 2010, 505:194.,2010.
[45] Shi H X, Zhang T Y, An T C, Li B, Wang X. Enhance-ment of photocatalytic activity of nano-scale TiO2 particles co-doped by rare earth elements and heteropolyacids. J. Colloid Interface Sci., 2012, 380:121.,2012.
[46] Mohamed R, Mkhalid I. The effect of rare earth dopants on the structure, surface texture and photocatalytic properties of TiO2-SiO2 prepared by sol-gel method. J. Alloys Compd., 2010, 501:143.,2010.
[47] Hassan M S, Amna T, Yang O B, Kim H C, Khil M S. TiO2 nanofibers doped with rare earth elements and their photocatalytic activity. Ceram. Int., 2012, 38:5925.,2012.
[48] Yang P, Lu C, Hua N P, Du Y K. Titanium dioxide nano-particles co-doped with Fe3+and Eu3+ions for photocata-lysis. Mater. Lett., 2002, 57:794.,2002.
[49] Shi H X, Zhang T Y, Wang H L. Preparation and photo-catalytic activity of La3+and Eu3+co-doped TiO2 nanopar-ticles:photo-assisted degradation of methylene blue. J. Rare Earths, 2011, 29:746.,2011.
[50] Xin Y J, Liu H L. Study on mechanism of photocatalytic performance of La-doped TiO2/Ti photoelectrodes by theoretical and experimental methods. J. Solid State Chem., 2011, 184:3240.,2011.
[51] Yan Q Z, Su X T, Huang Z Y, Ge C C. Sol-gel auto-ig-niting synthesis and structural property of cerium-doped titanium dioxide nanosized powders. J. Eur. Ceram. Soc., 2006, 26:915.,2006.
[52] Yang J, Pan L M, Xue X X, Wang M, Qiu T. Effect of Tb2O3 additive on structure of anatase and photocatalytic activity of TiO2/(O’+β’)-sialon multi-phase ceramics. J. Rare Earths, 2009, 27:204.,2009.
[53] Liang C H, Li F B, Liu C S, Lu H L, Wang X G. The en-hancement of adsorption and photocatalytic activity of rare earth ions doped TiO2 for the degradation of Orange I. Dyes Pigm., 2008, 76:477.,2008.
[54] Yu Y G, Chen G, Hao L X, Zhou Y S, Wang Y, Pei J, Sun J X, Han Z H. Doping La into the depletion layer of the Cd0.6Zn0.4S photocatalyst for efficient H2 evolution. Chem. Commun., 2013, 49:10142.,2013.
[55] Peña M A, Fierro J L G. Chemical structures and per-formance of perovskite oxides. Chem. Rev., 2001, 101:1981.,2001.
[56] Hu R S, Li C, Wang X, Sun Y, Jia H X, Su H Q, Zhang Y L. Photocatalytic activities of LaFeO3 and La2FeTiO6 in p-chlorophenol degradation under visible light. Catal. Commun., 2012, 29:35.,2012.
[57] Yuan Y P, Zheng J, Zhang X L, Li Z S, Yu T, Ye J H, Zou Z G. BaCeO3 as a novel photocatalyst with 4f electronic configuration for water splitting. Solid State Ionics, 2008, 178:1711.,2008.
[58] Hatakeyama T, Takeda S, Ishikawa F, Ohmura A, Naka-yama A, Yamada Y, Matsushita A, Yea J. Photocatalyticactivities of Ba2RBiO6(R=La, Ce, Nd, Sm, Eu, Gd, Dy)under visible light irradiation. J. Ceram. Soc. Jpn., 2010, 118:91.,2010.
[59] Song S, Xu L J, He Z Q, Ying H P, Chen J M, Xiao X Z, Yan B. Photocatalytic degradation of C.I. Direct Red 23 in aqueous solutions under UV irradiation using SrTiO3/CeO2 composite as the catalyst. J. Hazard. Mater., 2008, 152:1301.,2008.
[60] Niu X S, Li H H, Liu G G. Preparation, characterization and photocatalytic properties of REFeO3(RE=Sm, Eu, Gd). J. Mol. Catal. A:Chem., 2005, 232:89.,2005.
[61] Ding J L, Lü X M, Shu H M, Xie J M, Zhang H. Micro-wave-assisted synthesis of perovskite ReFeO3(Re=La, Sm, Eu, Gd)photocatalyst. Mater. Sci. Eng., B, 2010, 171:31.,2010.
[62] Yi Z G, Ye J H. Band gap tuning of Na1-xLaxTa1-xCoxO3 solid solutions for visible light photocatalysis. Appl. Phys. Lett., 2007, 91:254108.,2007.
[63] Shi J W, Ye J H, Zhou Z H, Li M T, Guo L J. Hydrother-mal synthesis of Na0.5La0.5TiO3-LaCrO3 solid solution sin-gle crystal nanocubes for visible-light-driven photocata-lytic H2 evolution. Chem. Eur. J., 2011, 17:7858.,2011.
[64] Yi Z G, Ye J H. Band gap tuning of Na1-xLaxTa1-xCrxO3 for H2 generation from water under visible light irradiation. J. Appl. Phys., 2009, 106:074910.,2009.
[65] Machida M, Yabunaka J, Kijima T. Synthesis and photo-catalytic property of layered perovskite tantalates, RbLnTa2O7(Ln=La, Pr, Nd, and Sm). Chem. Mater., 2000, 12:812.,2000.
[66] Machida M, Miyazaki K, Matsushima S, Arai M. Photo-catalytic properties of layered perovskite tantalates, MLnTa2O7(M=Cs, Rb, Na, and H; Ln=La, Pr, Nd, and Sm). J. Mater. Chem., 2003, 13:1433.,2003.
[67] Machida M, Murakami S, Kijima T, Matsushima S, Arai M. Photocatalytic property and electronic structure of lan-thanide tantalates, LnTaO4(Ln=La, Ce, Pr, Nd, and Sm). J. Phys. Chem. B, 2001, 105:3289.,2001.
[68] Hwang D W, Lee J S, Li W, Oh S H. Electronic band structure and photocatalytic activity of Ln2Ti2O7(Ln=La, Pr, Nd). J. Phys. Chem. B, 2003, 107:4963.,2003.
[69] Zou Z G, Ye J H, Arakawa H. Role of R in Bi2RNbO7(R=Y, rare earth):effect on band structure and photocata-lytic properties. J. Phys. Chem. B, 2002, 106:517.,2002.
[70] Zou Z G, Ye J H, Arakawa H. Photocatalytic properties and electronic structure of a novel series of solid photo-catalysts, Bi2RNbO7(R=Y, rare earth). Top. Catal., 2003, 22:107.,2003.
[71] Tang X D, Ye H Q, Zhao Z, Liu H, Ma C X. Photocata-lytic splitting of water over a novel visible-light-response photocatalyst Nd2InTaO7. Catal. Lett., 2009, 133:362.,2009.
[72] Kudo A, Okutomi H, Kato H. Photocatalytic water split-ting into H2 and O2 over K2LnTa5O15 powder. Chem. Lett., 2000, 29:1212.,2000.
[73] Tian M K, Shangguan W F, Tao W L. The photocatalytical activities for water decomposition of K4R2M10O30(R=Y, La, Ce, Nd, Sm;M=Ta, Nb)and their photophysical prop-erties based on the first principle calculation. J. Mol. Catal. A:Chem., 2012, 352:95.,2012.
[74] Abe R, Higashi M, Zou Z, Sayama K, Abe Y. Photocata-lytic water splitting into H2 and O2 over R2Ti2O7(R=Y, rare earth)with pyrochlore structure. Chem. Lett., 2004, 33:954.,2004.
[75] Uno M, Kosuga A, Okui M, Horisaka K, Yamanaka S. Photoelectrochemical study of lanthanide titanium oxides, Ln2Ti2O7(Ln=La, Sm, and Gd). J. Alloys Compd., 2005, 400:270.,2005.
[76] Abe R, Higashi M, Sayama K, Abe Y, Sugihara H. Photo-catalytic activity of R3MO7 and R2Ti2O7(R=Y, Gd, La;M=Nb, Ta)for water splitting into H2 and O2. J. Phys. Chem. B, 2006, 110:2219.,2006.
[77] Guo X Y, Di W H, Chen C F, Liu C X, Wang X, Qin W P. Enhanced near-infrared photocatalysis of NaYF4:Yb, Tm/CdS/TiO2 composites. Dalton Trans., 2014, 43:1048.,2014.
[78] Wang W, Huang W J, Ni Y R, Lu C H, Tan L J, Xu Z Z. Graphene supported β-NaYF4:Yb3+,Tm3+ and N doped P25 nanocomposite as an advanced NIR and sunlight driven upconversion photocatalyst. Appl. Surf. Sci., 2013, 282:832.,2013.
[79] Guo X Y, Song W Y, Chen C F, Di W H, Qin W P. Near-infrared photocatalysis of β-NaYF4:Yb3+,Tm3+@ZnO composites. Phys. Chem. Chem. Phys., 2013, 15:14681.,2013.
[80] Li C H, Wang F, Zhu J A, Yu J C. NaYF4:Yb,Tm/CdS composite as a novel near-infrared-driven photocatalyst. Appl. Catal. B-Environ., 2010, 100:433.,2010.
[81] Zhang Y W, Hong Z L. Synthesis of lanthanide-doped NaYF4@TiO2 core-shell composites with highly crystal-line and tunable TiO2 shells under mild conditions and their upconversion-based photocatalysis. Nanoscale, 2013, 5:8930.,2013.
[82] Tang Y N, Di W H, Zhai X S, Yang R Y, Qin W P. NIR-responsive photocatalytic activity and mechanism of NaYF4:Yb, Tm@TiO2 core-shell nanoparticles. ACS Catal., 2013, 3:405.,2013.
[83] Stöber W, Fink A, Bohn E. Controlled growth of mono-disperse silica spheres in the micron size range. J. Colloid Interface Sci., 1968, 26:62.,1968.
[84] Wang W, Huang W J, Ni Y R, Lu C H, Xu Z Z. Different upconversion properties of β-NaYF4:Yb3+,Tm3+/Er3+ in affecting the near-infrared-driven photocatalytic activity of high-reactive TiO2. ACS Appl. Mater. Interfaces, 2014, 6:340.,2014.
[85] Feng G F, Liu S W, Xiu Z L, Zhang Y, Yu J X, Chen Y G, Wang P, Yu X J. Visible light photocatalytic activities of TiO2 nanocrystals doped with upconversion luminescenceagent. J. Phys. Chem. C, 2008, 112:13692.,2008.
[86] Obregon S, Colon G. Evidence of upconversion lumines-cence contribution to the improved photoactivity of erbium doped TiO2 systems. Chem. Commun., 2012, 48:7865.,2012.
[87] Wang W L, Shang Q K, Zheng W, Yu H, Feng X J, Wang Z D, Zhang Y B, Li G Q. A novel near-infrared antibacte-rial material depending on the upconverting property of Er3+-Yb3+-Fe3+tridoped TiO2 nanopowder. J. Phys. Chem. C, 2010, 114:13663.,2010.
[88] Zhang Z J, Wang W Z, Yin W Z, Shang M, Wang L, Sun S M. Inducing photocatalysis by visible light beyond the absorption edge:effect of upconversion agent on the photocatalytic activity of Bi2WO6. Appl. Catal., B-Environ., 2010, 101:68.,2010.
[89] Shi J W, Ye J H, Ma L J, Ouyang S X, Jing D W, Guo L J. Site-selected doping of upconversion luminescent Er3+into SrTiO3 for visible-light-driven photocatalytic H2 or O2 evolution. Chem. Eur. J., 2012, 18:7543.,2012.
[90] Yan H J, Yang J H, Ma G J, Wu G P, Zong X, Lei Z B, Shi J Y, Li C. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photo-catalyst. J. Catal., 2009, 266:165.,2009.
[91] Navarro R M, Sánchez-Sánchez M C, Alvarez-Galvan M C, Valle F d, Fierro J L G. Hydrogen production from re-newable sources:biomass and photocatalytic opportunities. Energy Environ. Sci., 2009, 2:35.,2009.
[92] Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J. Am. Chem. Soc., 2005, 127:8286.,2005.
[93] Linic S, Christopher P, Ingram D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater., 2011, 10:911.,2011.
[94] Wang X, Xu Q, Li M R, Shen S, Wang X L, Wang Y C, Feng Z C, Shi J Y, Han H X, Li C. Photocatalytic overall water splitting promoted by an alpha-beta phase junction on Ga2O3. Angew. Chem. Int. Ed., 2012, 51:13089.,2012.
[95] Du J, Wu Q, Zhong S, Gu X, Liu J, Guo H Z, Zhang W L, Peng H L, Zou J G. Effect of hydroxyl groups on hydro-philic and photocatalytic activities of rare earth doped tita-nium dioxide thin films. J. Rare Earths, 2015, 33:148.,2015.
[96] Hu J, Men J, Ma J H, Huang H. Preparation of LaMnO3/graphene thin films and their photocatalytic activity. J. Rare Earths, 2014, 32:1126.,2014.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%