We investigated the effect of annealing time on the structure and optical properties of SrWO4:Eu3+powders prepared by the non-hydrolytic sol-gel method and heat treated at 800 oC for 2, 4, 8 and 16 h. Thermogravimetric and differential thermal analyses revealed that SrWO4:Eu3+powders were obtained at about 800 oC. X-ray diffraction patterns and Rietveld refinement data confirmed that all powders had a scheelite-type tetragonal structure. Micro-Raman and Fourier transform infrared spectra indicated structural order at short range and anti-symmetric stretching vibrations of O–W–O bonds associated with tetrahedral [WO4] clusters. Optical properties were investigated by ultraviolet-visible (UV-vis) diffuse reflectance, and photoluminescence (PL) data which provided the evolution of quantum efficiency (η) and lifetime (τ). UV-vis spectroscopy evidenced intermediate energy levels within the band gap of SrWO4:Eu3+powders. PL properties validated that the Eu3+electric-dipole (5D0→7F2) transition in PL emission spectra was domi-nant which proved that Eu3+ions were positioned in a site without an inversion center. [(5D0→7F2)/(5D0→7F1)] band ratios showed that Eu3+ions were located in a low symmetry environment. The PL emission,ηandτproved the dependence on the annealing time in the behavior of SrWO4:Eu3+powders with a higher relative emission PL intensity as well as higherηandτvalues related to other samples when heat treated at 800 oC for 8 h.
参考文献
[1] | Grobelna B. Luminescence based on energy transfer in xerogels doped with Tb2-xEux(WO4)3. Opt. Appl., 2008, 38:39.,2008. |
[2] | Su Y G, Li L P, Li G S. Synthesis and optimum lumin-escence of CaWO4-based red phosphors with codoping of Eu3+and Na+. Chem. Mater., 2008, 20:6060.,2008. |
[3] | He X H, Guan M Y, Lian N, Sun J H, Shang T M. Synthe-sis and luminescence characteristics of K2Bi(PO4)(MO4):Eu3+(M=Mo, W)red-emitting phosphor for white LEDs. J. Alloys Compd., 2010, 492:452.,2010. |
[4] | Shi S K, Liu X R, Gao J, Zhou J. Spectroscopic properties and intense red-light emission of(Ca, Eu, M)WO4(M=Mg, Zn, Li). Spectrochim. Acta Part A, 2008, 69:396.,2008. |
[5] | Guo C F, Chen T, Luan L, Zhang W, Huang D X. Lumi-nescent properties of R2(MoO4)3:Eu3+(R=La, Y, Gd)phos-phors prepared by sol-gel process. J. Phys. Chem. Solid., 2008, 69:1905.,2008. |
[6] | Neeraj S, Kijima N, Cheetham A K. Novel red phosphors for solid-state lighting:the system NaM(WO4)2-x(MoO4)x:Eu3+(M, Gd, Y, Bi). Chem. Phys. Lett., 2004, 387:2.,2004. |
[7] | Qin C X, Huang Y L, Chen G Q, Shi L, Qiao X B, Gan J H, Seo H J. Luminescence properties of a red phosphor euro-pium tungsten oxide Eu2WO6. Mater. Lett., 2009, 63:1162.,2009. |
[8] | Tian L H, Yang P, Wu H, Li F Y. Luminescence properties of Y2WO6:Eu3+incorporated with Mo6+or Bi3+ions as red phosphors for light-emitting diode applications. J. Lumin., 2010, 130:717.,2010. |
[9] | Cao F B, Tian Y W, Chen Y J, Xiao L J, Wu Q. Lumines-cence investigation of red phosphors Ca0.54Sr0.34-1.5xEu0.08 Smx(MoO4)y(WO4)1-y for UV-white LED device. J. Lu-min., 2009, 129:585.,2009. |
[10] | Cao F B, Tian Y W, Chen Y J, Xiao L J, Wu Q. Novel red phosphors for solid-state lighting:Ca0.54Sr0.34-1.5xEu0.08Lax(MoO4)y(WO4)1-y. J. Alloys Compd., 2009, 475:387.,2009. |
[11] | Cavalcante L S, Batista F M C, Almeida M A P, Rabelo A C, Nogueira I C, Batista N C, Varela J A, Santos M R M C, Longo E, Siu Li M. Structural refinement, growth process, photoluminescence and photocatalytic properties of(Ba1-xPr2x/3)WO4 crystals synthesized by the coprecipita-tion method. RSC. Adv., 2012, 2:6438.,2012. |
[12] | Lei F, Yan B. Morphology-controlled synthesis, physical characterization, and photoluminescence of novel self-assembled pomponlike white light phosphor:Eu3+-doped sodium gadolinium tungstate. J. Phys. Chem. C, 2009, 113:1074.,2009. |
[13] | Jia G H, Wang C F, Xu S Q. Local site symmetry determination of scheelite-type structures by Eu3+spectroscopy. J. Phys. Chem. C, 2010, 114:17905.,2010. |
[14] | Lupei A, Lupei V, Gheorghe C, Gheorghe L, Achim A. Multicenter structure of the optical spectra and the charge-compensation mechanisms in laser crystals. J. Appl. Phys., 2008, 104:083102.,2008. |
[15] | Shi S K, Gao J, Zhou J. Effects of charge compensation on the luminescence behavior of Eu3+ activated CaWO4 phosphor. Opt. Mater., 2008, 30:1616.,2008. |
[16] | Sczancoski J C, Cavalcante L S, Joya M R, Espinosa J W M, Pizani P S, Longo E. Synthesis, growth process and photoluminescence properties of SrWO4 powders. J. Colloid Interface Sci., 2009, 330:227.,2009. |
[17] | Maurera M A M A, Souza A G, Soledade L E B, Pontes F M, Longo E, Leite E R, Varela J A. Microstructural and optical characterization of CaWO4 and SrWO4 thin films prepared by a chemical solution method. Mater. Lett., 2004, 58:727.,2004. |
[18] | Sczancoski J C, Bomio M D R, Cavalcante L S, Joya M R, Pizani P S, Varela J A, Longo E, Siu Li M, Andrés J A. Morphology and blue photoluminescence emission of PbMoO4 processed in conventional hydrothermal. J. Phys. Chem. C, 2009, 113:5812.,2009. |
[19] | Jia G, Tu C, You Z, Li J, Zhu Z, Wang Y, Wu B. Czochralski technique growth of pure and rare-earth-doped SrWO4 crystals. J. Cryst. Growth, 2004, 273:220.,2004. |
[20] | Errandonea D, Pellicer-Porres J, Manjón F J, Segura A, Ferrer-Roca Ch, Kumar R S, Tschauner O, Rodríguez-Hernández P, López-Solano J, Radescu S, Mujica A, Munoz A, Aquilanti G. High-pressure structural study of the scheelite tungstates CaWO4 and SrWO4. Phys. Rev. B, 2005, 72:174106.,2005. |
[21] | Zhou L Y, Wei J S, Wu J R, Gong F Z, Yi L H, Huang J L. Potential red-emitting phosphor for white LED solid-state lighting. J. Alloys. Compd., 2009, 476:390.,2009. |
[22] | Barros B S, De Lima A C, Da Silva Z R, Melo D M A, Alves Jr. S. Synthesis and photoluminescent behavior of Eu3+-doped alkaline-earth tungstates. J. Phys. Chem. Solid., 2012, 73:635.,2012. |
[23] | Ju Z H, Wei R P, Gao X P, Liu W S, Pang C R. Red phosphor SrWO4:Eu3+ for potential application in white LED. Opt. Mater., 2011, 33:909.,2011. |
[24] | Haque M M, Lee H I, Kim D K. Luminescent properties of Eu3+-activated molybdate-based novel red-emitting phos-phors for LEDs. J. Alloys Compd., 2009, 481:792.,2009. |
[25] | Liu J, Lian H Z, Shi C S. Improved optical photoluminescence by charge compensation in the phosphor system CaMoO4:Eu3+. Opt. Mater., 2007, 29:1591.,2007. |
[26] | Zhao X X, Wang X J, Chen B J, Meng Q Y, Di W H, Ren G Z, Yang Y M. Novel Eu3+-doped red-emitting phosphor Gd2Mo3O9 for white-light-emitting-diodes(WLEDs)application. J. Alloys Compd., 2007, 433:352.,2007. |
[27] | Liao J S, You H Y, Zhang S A, Jiang J L, Qiu B, Huang H P, Wen H R. Synthesis and luminescence properties of BaWO4:Pr3+microcrystal. J. Rare Earths, 2011, 29:623.,2011. |
[28] | Cavalcante L S, Sczancoski J C, Lima L F, Espinosa J W M, Pizani P S, Varela J A, Longo E. Synthesis, characteri-zation, anisotropic growth and photoluminescence of BaWO4. Crys. Growth Des., 2009, 9:1002.,2009. |
[29] | Grobelna B. Luminescence based on energy transfer in xerogels doped with Ln2-xTbx(WO4)3. J. Alloys Compd., 2007, 440:265.,2007. |
[30] | Lou Z, Cocivera M. Cathodoluminescence of CaWO4 and SrWO4 thin films prepared by spray pyrolysis. Mater. Res. Bull., 2002, 37:1573.,2002. |
[31] | Pereira P F S, De Moura A P, Nogueira I C, Lima M V S, Longo E, De Sousa Filho P C, Serra O A, Nassar E J, Rosa I L V. Study of the annealing temperature effect on the structural and luminescent properties of SrWO4:Eu phos-phors prepared by a non-hydrolytic sol-gel process. J. Al-loys Compd., 2012, 526:11.,2012. |
[32] | Hay J N, Raval H M. Synthesis of organic-inorganic hy-brids via the non-hydrolytic sol-gel process. Chem. Mater., 2001, 13:3396.,2001. |
[33] | Hay J N, Porter D, Raval H M. A versatile route to organically-modified silicas and porous silicas via the non-hydrolytic sol-gel process. J. Mater. Chem., 2000, 10:1811.,2000. |
[34] | Hay J N, Raval H M. Preparation of inorganic oxides via a non-hydrolytic sol-gel route. J. Sol-Gel Sci. Tech., 1998, 13:109.,1998. |
[35] | Vioux A. Nonhydrolytic sol-gel routes to oxides. Chem. Mater., 1997, 9:2292.,1997. |
[36] | Santos M A, Picon F C, Escote M T, Leite R, Pizani P S, Varela J A, Longo E. Room-temperature photoluminescence in structurally disordered SrWO4. Appl. Phys. Lett., 2006, 88:211913.,2006. |
[37] | Cavalcante L S, Sczancoski J C, Albarici V C, Matos J M E, Varela J A, Longo E. Synthesis, characterization, structural refinement and optical absorption behavior of PbWO4 powders. Mater. Sci. Eng. B, 2008, 150:18.,2008. |
[38] | Nassif V, Carbonio R E, Alonso J A. Neutron diffraction study of the crystal structure of BaMoO4:A suitable pre-cursor for metallic BaMoO3 perovskite. J. Solid State Chem., 1999, 146:266.,1999. |
[39] | http://www.crystalimpact.com/diamond/ |
[40] | Bergerhoff G, Berndt M, Brandenburg K. Evaluation of crystallographic data with the program DIAMOND. J. Res. Natl. Inst. Stand. Techonol., 1996, 101:221.,1996. |
[41] | Cavalcante L S, Sczancoski J C, Tranquilin R L, Joya M R, Pizani P S, Varela J A, Longo E. BaMoO4 powders processed in domestic microwave-hydrothermal:synthesis, characterization and photoluminescence at roomtemperature. J. Phys. Chem. Solids, 2008, 69:2674.,2008. |
[42] | Ferraro J R, Ziomek J S. Introductory Group Theory and Its Applications to Molecular Structure. 2nd Ed., New York:Plenum Press, 1975.,1975. |
[43] | Nishigaki S, Yano S, Kato H, Nonomura T. BaO-TiO2-WO3 microwave ceramics and crystalline BaWO4. J. Am. Ceram. Soc., 1988, 71:C11.,1988. |
[44] | Keyson D, Volanti D P, Cavalcante L S, Simões A Z, Souza I A, Vasconcelos J S, Varela J A, Longo E. Domestic microwave oven adapted for fast heat treatment of Ba0.5Sr0.5(Ti0.8Sn0.2)O3 powders. J. Mater. Proc. Tech., 2007, 189:316.,2007. |
[45] | Basiev T T, Sobol A A, Zverev P G, Ivleva L I, Osiko V V,Powell R C. Raman spectroscopy of crystals for stimulated Raman scattering. Opt. Mater., 1999, 11:307.,1999. |
[46] | Basiev T T, Sobol A A, Voronko Y K, Zverev P G. Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers. Opt. Mater., 2000, 15:205.,2000. |
[47] | Ling Z C, Xia H R, Ran D G, Liu F Q, Sun S Q, Fan J D, Zhang H J, Wang J Y, Yu L L. Lattice vibration spectra and thermal properties of SrWO4 single crystal. Chem. Phys. Lett., 2006, 426:85.,2006. |
[48] | Mao Y, Wong S S. General, room-temperature method for the synthesis of isolated as well as arrays of single-crystalline ABO4-type nanorods. J. Am. Chem. Soc., 2004, 126:15245.,2004. |
[49] | Marques A P A, Motta F V, Leite E R, Pizani P S, Varela J A, Longo E, Melo D M A. Evolution of photoluminescence as a function of the structural order or disorder in CaMoO4 nanopowders. J. App. Phys., 2008, 104:043505.,2008. |
[50] | Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. 4nd Ed.; New York:Wiley, 1996. 477.,1996. |
[51] | Kubelka P, Munk-Aussig F. Ein beitrag zur optik der farban striche. Zeit. Für. Tech. Physik., 1931, 12:593.,1931. |
[52] | Morales A E, Mora E S, Pal U. Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev. Mex. Fis. S., 2007, 53:18.,2007. |
[53] | Smith R A. Semiconductors. 2nd Ed.;London:Cambridge University Press, 1978. 434.,1978. |
[54] | Lacomba-Perales R, Ruiz-Fuertes J, Errandonea D, Martínez-García D, Segura A. Optical absorption of divalent metal tungstates:Correlation between the band-gap energy and the cation ionic radius. Eur. Phys. Lett., 2008, 83:37002.,2008. |
[55] | Cavalcante L S, Longo V M, Sczancoski J C, Almeida M A P, Batista A A, Varela J A, Orlandi M O, Longo E, Siu L M. Electronic structure, growth mechanism and photoluminescence of CaWO4 crystals. Cryst. Eng. Com-mun., 2012, 14:853.,2012. |
[56] | Longo V M, Orhan E, Cavalcante L S, Porto S L, Espinosa J W M, Varela J A, Longo E. Understanding the origin of photoluminescence in disordered Ca0.60Sr0.40WO4:An ex-perimental and first-principles study. Chem. Phys., 2007, 334:180.,2007. |
[57] | Cavalcante L S, Almeida M A P, Avansi W, Tranquilin R L, Longo E, Batista N C, Mastelaro V R, Siu Li M. Cluster coordination and photoluminescence properties of α-Ag2WO4 microcrystals. Inorg. Chem., 2012, 51:10675.,2012. |
[58] | Marques A P A, Longo V M, Melo D M A, Pizani P S, Leite E R, Varela J A, Longo E. Shape controlled synthe-sis of CaMoO4 thin films and their photoluminescence property. J. Solid State Chem., 2008, 181:1249.,2008. |
[59] | Kodaira C A, Brito H F, Felinto M C F C. Luminescence investigation of Eu3+ ion in the RE2(WO4)3 matrix(RE=La and Gd)produced using the Pechini method. J. Solid State Chem., 2003, 171:401.,2003. |
[60] | Wang J G, Jing X P, Yan C H, Lin J H, Liao F H. Influ-ence of fluoride on f-f transitions of Eu3+ in LiEuM2O8(M=Mo, W). J. Lumin., 2006, 121:57.,2006. |
[61] | Wei Q, Chen D H. Luminescent properties and the morphology of SrMoO4:Eu3+ powders synthesized via combining sol-gel and solid-state route. Cent. Eur. J. Phys., 2010, 8:766.,2010. |
[62] | Rosa I L V, Marques A P A, Tanaka M T S, Melo D M A, Leite E R, Longo E, Varela J A. Synthesis, characteriza-tion and photophysical properties of Eu3+ doped in BaMoO4. J. Fluoresc., 2008, 18:239.,2008. |
[63] | Mazzo T M, Moreira M L, Pinatti I M, Picon F C, Leite E R, Rosa I L V, Varela J A, Perazolli L A, Longo E. CaTiO3:Eu3+obtained by microwave assisted hydrothermal method:A photoluminescent approach. Opt. Mater., 2010, 32:990.,2010. |
[64] | Bunzli J-C G, Eliseeva S V. Lanthanide Luminescence:Photophysical, Analytical and Biological Aspects, Springer Ser Fluoresc:Basics lanthanide photophysics, Lausanne,Switzerland, 2010.,2010. |
[65] | Binnemans K, Jones P T. Perspectives for the recovery of rare earths from end-of-life fluorescent lamps. J. Rare Earths, 2014, 32:195.,2014. |
[66] | Zhou L Y, Wei J S, Gong F Z, Huang J L, Yi L H. A po-tential red phosphor ZnMoO4:Eu3+for light-emitting diode application. J. Solid State Chem., 2008, 181:1337.,2008. |
[67] | Liao J, You H, Zhou D, Wen H R, Hong R. Sol-gel preparation and photoluminescence properties of LiLa(MoO4)2:Eu3+ phosphors. Opt. Mater., 2012, 34:1468.,2012. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%