欢迎登录材料期刊网

材料期刊网

高级检索

Magnesium matrix composites reinforced with AlN particles were fabricated by the powder metallurgy technique. The evolution of lattice constants and solid solubility levels of Al in α-Mg and the microstructure of Mg-Al/AlN composites were investigated in the present study. The results showed that the solid solubility of Al in α-Mg reached a relatively high level by the P/M process with a long time of milling. X-ray diffraction showed that the peaks of Mg phase clearly shifted to higher angles. The lattice constants and cell volume decreased significantly compared with those of standard Mg due to a significant amount of Al incorporated into α-Mg in the form of substitutional solid solution. The degree of lattice deformation decreased at a low sintering temperature and increased at higher sintering temperatures due to the presence of AlN. Microstructural characterization of the composites revealed a necklace distribution of AlN particles in the Mg matrix. Heat treatment led to precipitation of Mg17Al12 from the supersaturated α-Mg solid solution. The precipitate exhibited granular and lath-shaped morphologies in Mg matrix and flocculent precipitation around AlN particles.

参考文献

[1] M.A. Thein, L. Lu, M.O. Lai, Compos. Struct. 75, 206 (2006)
[2] J. Liu, C. Suryanarayana, D. Ghosh, G. Subhash, L. An, J. Alloys Compd. 563, 165 (2013)
[3] Y. Cai, M.J. Tan, G.J. Shen, H.Q. Su, Mater. Sci. Eng. A 282, 232 (2000)
[4] X.J. Wang, X.S. Hu, K.B. Nie, K.K. Deng, K. Wu, M.Y. Zheng, Mater. Sci. Eng. A 545, 38 (2012)
[5] X.J. Wang, N.Z. Wang, L.Y. Wang, X.S. Hu, K. Wu, Y.Q. Wang, Y.D. Huang, Mater. Des. 57, 638 (2014)
[6] Q.C. Jiang, H.Y. Wang, B.X. Ma, Y. Wang, F. Zhao, J. Alloys Compd. 386, 177 (2005)
[7] H.M. Fu, M.X. Zhang, D. Qiu, P.M. Kelly, J.A. Taylor, J. Alloys Compd. 478, 809 (2009)
[8] R.J. Bruls, H.T. Hintzen, G. de With, R. Metselaar, J. Eur. Ceram. Soc. 21, 263 (2001)
[9] H.A. Toutanji, D. Friel, T. El-Korchi, R.N. Katz, G. Wechsler, W. Rafaniello, J. Eur. Ceram. Soc. 15, 425 (1995)
[10] S.S.S. Kumari, U.T.S. Pillai, B.C. Pai, J. Alloys Compd. 509, 2503 (2011)
[11] E. Bedolla, J. Lemus-Ruiz, A. Contreras, Mater. Des. 38, 91 (2012)
[12] C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001)
[13] C. Suryanarayana, Mechanical Alloying and Milling (Marcel Dekker, New York, 2004)
[14] M.A. Thein, L. Lu, M.O. Lai, J. Mater. Process. Technol. 209, 4439 (2009)
[15] S. Sankaranarayanan, M.K. Habibi, S. Jayalakshmi, K.J. Ai, A. Almajid, M. Gupta, Mater. Sci. Technol. 31, 1122 (2015)
[16] J.C. Jie, C.M. Zou, H.W. Wang, B. Li, Z.J. Wei, J. Alloys Compd. 510, 11 (2012)
[17] L. Gao, R.S. Chen, E.H. Han, J. Alloys Compd. 481, 379 (2009)
[18] L. Zhou, K. Su, Y. Wang, Q. Zeng, Y. Li, J. Alloys Compd. 596, 63 (2014)
[19] W.A. Counts, M. Friák, D. Raabe, J. Neugebauer, Acta Mater. 57, 69 (2009)
[20] Z. Zhang, H. Yu, G. Chen, H. Yu, C. Xu, Mater. Lett. 65, 2686 (2011)
[21] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction (Prentice Hall, New Jersey, 2001)
[22] J. Huang, X-ray Diffraction of Polycrystalline Materials: Experimental Principles, Methods and Applications (Metallurgical Industry Press, Beijing, 2012). (in Chinese)
[23] C. Suryanarayana, M.G. Norton, X-ray Diffraction: A Practical Approach (Plenum, New York, 1998)
[24] W.D. Callister, D.G. Rethwisch, Materials Science and Engineering, An Introduction , 9th edn. (Wiley, New Jersey, 2014)
[25] S. Ganeshan, S.L. Shang, Y. Wang, Z.K. Liu, Acta Mater. 57, 3876 (2009)
[26] H.C. Zhong, H. Wang, L.Z. Ouyang, Int. J. Hydrog. Energy 39, 3320 (2014)
[27] J. Hashim, L. Looney, M.S.J. Hashmi, J. Mater. Process. Technol. 92-93, 1 (1999)
[28] D.J. Lloyd, Int. Mater. Rev. 39, 1 (1994)
[29] A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer, D.H. StJohn, J. Light Met. 1, 61 (2001)
[30] T. Ying, M.Y. Zheng, Z.T. Li, X.G. Qiao, J. Alloys Compd. 608, 19 (2014)
[31] L. Li, M.O. Lai, M. Gupta, B.W. Chua, A. Osman, J. Mater. Sci. 35, 5553 (2000)
[32] Z. Wang, Y. Yang, B. Li, Y. Zhang, Z. Zhang, Mater. Sci. Eng. A 582, 36 (2013)
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%