In integrated circuit-grade single silicon Czochralski growth,the position and material of heat shield are main parameters affecting the heat exchange and crystal growth condition.By optimizing the above parameters,we attempted to increase the growth rate and crystal quality.Numerical simulation proved to verify the results before and after optimization.Through analyses of the temperature and microdefect distribution,it is found that the optimized heat shield can further increase the pulling rate and decrease the melt/crystal interface deflection,increase the average velocity of argon flow from ~2 to ~5 m·s-1,which is in favor of the transportation of SiO,and obtain the low defects concentration crystal and that the average temperature along the melt-flee surface is 8 ℃ higher than before avoiding supercooled melt effectively.
参考文献
[1] | Lan CW .Recent progress of crystal growth modeling and growth control[J].Chemical Engineering Science,2004(7):1437-1457. |
[2] | Virbulis J;Tomzig E;Ammon W .Silicon melt convection in large size Czochralski crucibles[J].Materials Science in Semiconductor Processing,2003,5(4-5):353. |
[3] | Omidreza Asadi Noghabi;Mohammed M'Hamdi;Moez Jomaa .Effect of crystal and crucible rotations on the interface shape of Czochralski grown silicon single crystals[J].Journal of Crystal Growth,2011(1):173-177. |
[4] | Tu H.l;Xiao Q.H;Gao Y;Zhou Q.G Zhang G.H and Chang Q .Numerical analysis and simulation of Czochralski growth process for large diameter silicon crystal[J].Rare Metals,2007,26(06):521. |
[5] | Lukanin D.P;Kalaev V.V .Advances in the simulation of heat transfer and prediction of the melt-crystal interface shape in silicon CZ growth[J].Journal of Crystal Growth,2004,266(1-3):20. |
[6] | GAO Yu,TU Hailing,ZHOU Qigang,DAI Xiaolin,XIAO Qinghua.Comparison of measurements and simulation results in 300 mm CZ silicon crystal growth[J].稀有金属(英文版),2007(06):607-610. |
[7] | Takano K.;Iida T.;Takase N.;Matsubara J.;Machida N. Kuramoto M.;Yamagishi H.;Shiraishi Y. .Numerical simulation for silicon crystal growth of up to 400 mm diameter in Czochralski furnaces[J].Materials Science & Engineering, B. Solid-State Materials for Advanced Technology,2000(1/3):30-35. |
[8] | Ren B.Y;Yang J.K;Li Y.L;Liu X.P and Wang M.H .Study on release rate of latent heat in Czochralski silicon growth[J].Rare Metals,2007,25(06):51. |
[9] | Xu W.T;Tu H.L;Chang Q .Numerical simulation of 300mm CZ silicon crystal growth with axial magnetic fields[J].J Material Science Forum,2010,689:179. |
[10] | Zheng Lu;Steven Kimbel .Growth of 450 mm diameter semiconductor grade silicon crystals[J].Journal of Crystal Growth,2011(1):193-195. |
[11] | CAO Jianwei,GAO Yu,CHEN Ying,ZHANG Guohu,QIU Minxiu.Simulation aided hot zone design for faster growth of CZ silicon mono crystals[J].稀有金属(英文版),2011(02):155-159. |
[12] | GAO Yu,XIAO Qinghua,ZHOU Qigang,DAI Xiaolin,TU Hailing.Effect of thermal shield and gas flow on thermal elastic stresses in 300 mm silicon crystal[J].稀有金属(英文版),2006(z2):45-50. |
[13] | Dornberger E.;Seidl A.;Schmitt S.;Leister HJ.;Schmitt C. Muller G.;Tomzig E. .THERMAL SIMULATION OF THE CZOCHRALSKI SILICON GROWTH PROCESS BY THREE DIFFERENT MODELS AND COMPARISON WITH EXPERIMENTAL RESULTS[J].Journal of Crystal Growth,1997(3/4):461-467. |
[14] | Smirnova OV;Durnev NV;Shandrakova KE;Mizitov EL;Soklakov VD .Optimization of furnace design and growth parameters for Si Cz growth, using numerical simulation[J].Journal of Crystal Growth,2008(7/9):2185-2191. |
[15] | Optimization of crystal growth by changes of flow guide, radiation shield and sidewall insulation in Cz Si furnace[J].Journal of Crystal Growth,2010(4):495. |
[16] | Voronkov VV. .Formation of voids and oxide particles in silicon crystals[J].Materials Science & Engineering, B. Solid-State Materials for Advanced Technology,2000(1/3):69-76. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%