欢迎登录材料期刊网

材料期刊网

高级检索

Lubricated fretting tests in mineral oil were performed with a nanocrystalline surface layer on a pure bulk Cu prepared by surface mechanical attrition treatment (SMAT) against a WC-Co ball. It was found that the nanocrystalline surface layer exhibited a markedly enhanced fretting wear resistance and higher friction coefficient relative to the coarse-grained (CG) form. The wear volume of the SMAT Cu is one order of magnitude lower than that of the CG Cu. The friction coefficient of the SMAT Cu increases with an increasing load and frequency, while for the CG Cu, the friction coefficient increases with an increasing fretting frequency up to 100 Hz and thereafter decreases. The higher hardness of the SMAT Cu is suggested to be the main factor causing its improved wear resistance and higher friction coefficient. A discontinuous metal transfer layer can be found on the WC-Co ball only after fretting against the SMAT Cu, which may partly account for the higher wear resistance of the SMAT Cu in comparison with the CG Cu.

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%