欢迎登录材料期刊网

材料期刊网

高级检索

The selection of a structural material requires a compromise between strength and ductility. The material properties will then be set by the choice of alloy composition and microstructure during synthesis and processing, although the requirements may change during service life. Materials design strategies that allow for a recoverable tuning of the mechanical properties would thus be desirable, either in response to external control signals or in the form of a spontaneous adaptation, for instance in self-healing. We have designed a material that has a hybrid nanostructure consisting of a strong metal backbone that is interpenetrated by an electrolyte as the second component. By polarizing the internal interface via an applied electric potential, we accomplish fast and repeatable tuning of yield strength, flow stress, and ductility. The concept allows the user to select, for instance, a soft and ductile state for processing and a high-strength state for service as a structural material.

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%