- 首页
- 王潇","id":"fb29475a-7beb-421a-a927-7003203f5cd8","originalAuthorName":"王潇"},{"authorName":"王丹军","id":"73d6fdc2-0e25-44f6-a21d-1c5e9046a871","originalAuthorName":"王丹军"},{"authorName":"崔华莉","id":"223de135-f113-4aaa-91bf-99b2e2c4a06f","originalAuthorName":"崔华莉"},{"authorName":"康俊","id":"79962c63-7eec-4b85-be26-5f635ad4657f","originalAuthorName":"康俊"},{"authorName":"程丽","id":"1480c59f-4a45-4b87-a7aa-3da3e1014dba","originalAuthorName":"程丽"},{"authorName":"王升文","id":"7c742861-1188-4aff-9845-93b564a07e55","originalAuthorName":"王升文"}],"doi":"","fpage":"484","id":"11282dfd-7969-4183-ac46-88b4e38a39d1","issue":"z3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"9cc8deed-e0b5-4858-b254-d67a57ba2699","keyword":"无机非金属材料","originalKeyword":"无机非金属材料"},{"id":"20aef4b3-6080-4a00-9c79-314e387aeff7","keyword":"氧化锌","originalKeyword":"氧化锌"},{"id":"7dbfd281-b4ca-478b-9b89-5e939bedb4de","keyword":"燃烧合成法","originalKeyword":"燃烧合成法"},{"id":"4dc8929b-756e-44c2-9016-cca93cd9aadf","keyword":"气敏性能","originalKeyword":"气敏性能"}],"language":"zh","publisherId":"gncl2011z3029","title":"燃烧法合成花状、四针状氧化锌及其气敏性能研究","volume":"42","year":"2011"},{"abstractinfo":"","authors":[{"authorName":"巩育军","id":"324208f3-cd84-4e3b-9e2f-17a8b767cce5","originalAuthorName":"巩育军"},{"authorName":"薛元英","id":"f7518648-0c1c-48a0-bcd5-953e5f67b552","originalAuthorName":"薛元英"},{"authorName":"李东升","id":"2179faa7-19fe-4b73-95df-cb8adf4437cc","originalAuthorName":"李东升"},{"authorName":"王文亮","id":"31ed0f6c-7284-418e-82f7-f56ed572184a","originalAuthorName":"王文亮"},{"authorName":"王升文","id":"863c3ff4-d053-4a41-a1c4-bab7a44e7901","originalAuthorName":"王升文"}],"doi":"10.3969/j.issn.1000-0518.2000.06.021","fpage":"657","id":"413d9480-3e9f-4b2e-8261-c52d0098f618","issue":"6","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"4dc33852-4994-45e9-99df-e731a04bf731","keyword":"丝裂霉素","originalKeyword":"丝裂霉素"},{"id":"3e9572d6-a9a7-4804-9185-bdb675cbb0e8","keyword":"表面活性剂双水相(ASTP)","originalKeyword":"表面活性剂双水相(ASTP)"},{"id":"5535145e-0743-4e70-a2e8-f67ce4ea4a7d","keyword":"分配规律","originalKeyword":"分配规律"}],"language":"zh","publisherId":"yyhx200006021","title":"丝裂霉素在表面活性剂双水相中的分配规律","volume":"17","year":"2000"},{"abstractinfo":"以松节油-马来酸酐(TMA)、邻苯二甲酸酐(PA)、间苯二甲酸(IPA)、己二酸(AD)、新戊二醇(NPG)、三羟甲基丙烷(TMP)为原料,以2,2---羟甲基丙酸(DMPA)为亲水性单体,合成了松节油基水性聚酯树脂分散体,并与氨基树脂(HMMM)配制成水性聚酯氨基漆.研究了DMPA用量及TMA与PA的物质的量比对松节油基水性聚酯树脂分散体及固化涂膜性能的影响.结果表明,当DMPA用量(以单体总质量计)为13%时松节油基水性聚酯树脂分散体性能较好,n(TMA)∶n(PA)=2∶1时,涂膜综合性能较好且达到溶剂型氨基漆技术指标.","authors":[{"authorName":"康小孟","id":"42e808d9-2763-4bf3-9300-79f148462978","originalAuthorName":"康小孟"},{"authorName":"王升文","id":"bf8a3674-5325-4cb7-85a9-1a4bb5ecad1a","originalAuthorName":"王升文"},{"authorName":"戴海雄","id":"e50b8cb0-419e-473c-a39d-ea540243c71d","originalAuthorName":"戴海雄"}],"doi":"","fpage":"50","id":"2aacef86-407b-47f2-b5b6-8ed1e7a54adb","issue":"11","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"ae1abd77-8e36-416a-a743-02f79a7566a9","keyword":"松节油","originalKeyword":"松节油"},{"id":"c7a2a263-0fae-4b04-85d3-6bafac765f8b","keyword":"水性聚酯分散体","originalKeyword":"水性聚酯分散体"},{"id":"35501203-74e7-42a6-b95b-61e88dc709d7","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"tlgy201511011","title":"松节油基水性聚酯树脂分散体的合成及涂膜性能研究","volume":"45","year":"2015"},{"abstractinfo":"介绍了利用组态王作为监控,可编程控制器作为下位机,实现了耐火厂散料配料系统的自动化生产,该系统具有手动功能和自动功能,手动功能具有现场手动和上位机手动功能,自动功能具有全自动和半自动功能.该系统可实现配方和配料制度的任意更改,投资低,故障少,自动化程度高.","authors":[{"authorName":"胡万里","id":"1adf7690-152f-4613-8672-0f57838973f3","originalAuthorName":"胡万里"}],"doi":"10.3969/j.issn.1001-1935.2010.01.023","fpage":"79","id":"1dfe65c5-d8e0-4c0f-8675-5a16012754bd","issue":"1","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"c439469b-f720-48b4-9591-ac1972753d5a","keyword":"组态王","originalKeyword":"组态王"},{"id":"57ed6c1f-ef90-4357-8a60-32ade74e3327","keyword":"配料","originalKeyword":"配料"},{"id":"41435bef-3a13-40c3-9a86-acb7115813a4","keyword":"上位机","originalKeyword":"上位机"}],"language":"zh","publisherId":"nhcl201001023","title":"基于组态王的包钢耐火配料系统设计","volume":"44","year":"2010"},{"abstractinfo":"针对目前由金属开口谐振环与金属杆构成的左手材料结构存在构造比较复杂、工艺实现较难的缺点,设计实现了一种基于金属条的改进结构一”王”字型结构.通过理论分析和电磁仿真软件Ansoft HFSS 10模拟仿真,利用散射参量法提取参数结果表明该结构可以在X波段实现介电常数和磁导率同时为负.讨论研究了该左手结构的金属条宽度、中间缺口宽度、中间条宽度三个结构尺寸参数变化对谐振频率和透射峰幅值的影响,结果表明三个参数的变化都会对二者产生影响,其中金属条宽度改变对透射峰值影响幅度相对较大,缺口宽度改变对谐振频率影响幅度相对较大.","authors":[{"authorName":"孙振","id":"9082c3be-c293-4b15-909c-5363afc0fb88","originalAuthorName":"孙振"},{"authorName":"竹有章","id":"8794de66-28bc-4427-979c-0fb97ab9ed96","originalAuthorName":"竹有章"},{"authorName":"何星","id":"6f08d970-e077-44f0-b31d-5ff4c5df0ddf","originalAuthorName":"何星"},{"authorName":"杨成莱","id":"5bc766cf-c957-469f-bbec-fd1d91e6a29e","originalAuthorName":"杨成莱"},{"authorName":"李磐石","id":"5e728fff-ba05-408f-beb6-bbddd58f2624","originalAuthorName":"李磐石"}],"doi":"","fpage":"107","id":"59adf8cc-36c0-4ea6-9f45-b82068f1d277","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"0445fc0a-e195-44ae-af64-1760db975e7a","keyword":"金属条","originalKeyword":"金属条"},{"id":"d8320c68-3cf6-4f73-a0e7-166c6d16aebd","keyword":"左手材料","originalKeyword":"左手材料"},{"id":"ac328512-f54f-4710-8a77-4dab2151863d","keyword":"负折射率","originalKeyword":"负折射率"},{"id":"46c8a8fd-6c41-46c9-a435-b75cc3ba30f2","keyword":"谐振频率","originalKeyword":"谐振频率"},{"id":"f5aef037-2407-4220-9e53-1a929c2f3666","keyword":"S参数","originalKeyword":"S参数"}],"language":"zh","publisherId":"clkxygc201301022","title":"“王”字型左手材料结构的设计与仿真","volume":"31","year":"2013"},{"abstractinfo":"2011年9月27日,正值《材料科学与工程学报》第四届编辑委员会荣誉主任王启东先生九十华诞暨从教68周年。在此,我们向王启东先生表示最热烈的祝贺。","authors":[{"authorName":"无","id":"fa1f4c18-4b21-41fe-a5da-f75bee6fcc9f","originalAuthorName":"无"}],"doi":"","fpage":"0003","id":"2723bfaa-3a2b-477a-b3a3-34e9caa3dceb","issue":"6","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"1695bd23-b0d0-4d65-9a72-a2e0e859d3b0","keyword":"材料科学与工程","originalKeyword":"材料科学与工程"},{"id":"73611c6e-b3e7-45fe-a831-ffebce6bbf74","keyword":"编辑委员会","originalKeyword":"编辑委员会"},{"id":"318bfe79-321e-4d80-b6c7-b14714da80e6","keyword":"桃","originalKeyword":"桃"}],"language":"zh","publisherId":"clkxygc201106034","title":"寿山千寻碧,桃李几度红——热烈祝贺王启东先生九十华诞","volume":"29","year":"2011"},{"abstractinfo":"在室温环境下(25℃)对某ZrTiNiCuBe块体非晶合金材料进行不同应变率条件下的静态与动态压缩实验。并采用扫描电镜技术(SEM)对试样断口、侧面等进行表征,对比静、动态条件下的应力?应变曲线形貌的差异。结果表明:静态压缩时为剪切断裂,微观形貌上出现脉状花样与剪切带;剪切带诱发裂纹的形成,裂纹随着剪切带扩展。动态压缩时为脆性解理断裂,断面粗糙且发现大量熔滴;断口处出现解理台阶,塑性阶段出现明显的锯齿流变现象。从能量守恒定律出发,利用变形过程中弹性应变能的变化规律推测剪切变形区域内温升的变化规律,温升的变化规律揭示锯齿流变与试样的断裂机制。","authors":[{"authorName":"潘念侨","id":"5b38f5be-5f4e-41aa-b510-36e57ba618d2","originalAuthorName":"潘念侨"},{"authorName":"杜忠华","id":"cd695ea3-bade-42db-9f6e-6c432e1a7d3e","originalAuthorName":"杜忠华"},{"authorName":"朱正旺","id":"c1a5bc5e-fb7c-4399-8a83-6f34fba63d3d","originalAuthorName":"朱正旺"},{"authorName":"雷晓云","id":"327e07fb-9b33-4b00-9ced-c5c34927d4bc","originalAuthorName":"雷晓云"},{"authorName":"徐立志","id":"b8177a5b-07d8-49b0-8d22-9311a16a5ee3","originalAuthorName":"徐立志"}],"doi":"","fpage":"973","id":"466be343-8bbf-408a-90b9-b8294e2752a8","issue":"5","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"951c1658-d0f2-4ec4-a9fd-de12a3f9eb60","keyword":"块体非晶合金","originalKeyword":"块体非晶合金"},{"id":"8f11642d-0810-490c-a98f-8f835a0e09ea","keyword":"锯齿流变","originalKeyword":"锯齿流变"},{"id":"5eaee4e7-db28-41d9-a48b-df858f426d57","keyword":"绝热温升","originalKeyword":"绝热温升"},{"id":"05258f6f-61e1-47b4-b597-143fc2a079b4","keyword":"弹性应变能","originalKeyword":"弹性应变能"}],"language":"zh","publisherId":"zgysjsxb201605004","title":"ZrTiNiCuBe块体非晶合金剪切带内温升与断裂温升","volume":"26","year":"2016"},{"abstractinfo":"恒利铁矿是王窑矿区的一部分,该矿0-15线矿体一期开采深度在-40m以上,一期开采储量为705万t,矿石品位平均为TFe48.07%.文章针对恒利铁矿矿产资源特点,研究制定了综合开采工程技术方案,并详细进行了技术论证和经济分析,以确保该部分矿产资源能安全高效地获得回收.","authors":[{"authorName":"余斌","id":"03949a35-7e95-495a-938c-334d816d8947","originalAuthorName":"余斌"},{"authorName":"龚宇同","id":"15cd43c7-bf9f-4b1a-91f8-c8650d1ae20b","originalAuthorName":"龚宇同"},{"authorName":"谢源","id":"c21a63fe-d14d-4653-84f4-e73ad3a2a3c7","originalAuthorName":"谢源"},{"authorName":"褚志勇","id":"f7382db6-2c95-4db7-ac38-c52c53a4d90a","originalAuthorName":"褚志勇"}],"doi":"10.3969/j.issn.1000-6826.2006.03.006","fpage":"14","id":"7d738339-d21d-442d-ac57-d71f8ad722f3","issue":"3","journal":{"abbrevTitle":"JSSJ","coverImgSrc":"journal/img/cover/3abe017a-2574-4821-8152-4ae974ef0471.jpg","id":"47","issnPpub":"1000-6826","publisherId":"JSSJ","title":"金属世界"},"keywords":[{"id":"cbf3c134-3cf6-4029-86f0-6c35d3811582","keyword":"恒利铁矿开采","originalKeyword":"恒利铁矿开采"},{"id":"6bfaae58-4cb0-4142-b18d-24bcd93c7ba6","keyword":"方案研究","originalKeyword":"方案研究"},{"id":"0a182b87-2725-44fd-8cbc-e447518344f5","keyword":"投资估算","originalKeyword":"投资估算"},{"id":"f1fee395-db7a-4af6-a75d-356b813cdd24","keyword":"财务评价","originalKeyword":"财务评价"}],"language":"zh","publisherId":"jssj200603006","title":"王窑矿区恒利铁矿0-15线矿体安全开采技术研究","volume":"","year":"2006"},{"abstractinfo":"基于热线理论提出计算高速线材轧制温升的新方法.由于线材精轧轧制速度快,散热条件差,可认为轧制过程是绝热的,线材轧制外功几乎全部转换为热.线材温升的热量全部来自于变形区内的速度不连续线所做的剪切功率,称此速度不连续线为热量分布线(热线).道次温升为变形区内全部热线温升的总和,在假定道次变形中椭圆长轴或短轴不变条件下推导出高速线材精轧机组温升计算公式.对φ6.5 mm线材精轧进行了实际温升计算与测量,结果表明:计算的理论温升略低于实际测量温升,线材精轧入口温度越低,出口累计温升越大.","authors":[{"authorName":"赵德文","id":"2afae748-c817-41eb-abd9-0c60c80948bf","originalAuthorName":"赵德文"},{"authorName":"白雪峰","id":"cf258491-da76-4032-8c9d-b6d028a0f8de","originalAuthorName":"白雪峰"},{"authorName":"王晓文","id":"a713a461-b476-4c21-b495-63b958cbea11","originalAuthorName":"王晓文"},{"authorName":"刘相华","id":"090f2fa2-2bd4-46e1-b009-1a6bc79afef6","originalAuthorName":"刘相华"},{"authorName":"王国栋","id":"bc0894fa-95f3-48e6-a949-979e7f92b25f","originalAuthorName":"王国栋"}],"doi":"","fpage":"42","id":"282c0d40-0e9d-4bb6-a305-b0b8b431b0a2","issue":"10","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"73b2ee34-cb3f-45d8-beea-a24fbceb3479","keyword":"热线","originalKeyword":"热线"},{"id":"78166d07-9181-448c-af23-05d74750daa7","keyword":"速度不连续线","originalKeyword":"速度不连续线"},{"id":"fd8099f8-a417-4cf2-a779-3802946658a0","keyword":"剪切功率","originalKeyword":"剪切功率"},{"id":"ff96e6c2-69d4-4a42-ad89-e7ff08768780","keyword":"温升","originalKeyword":"温升"},{"id":"5ff1c559-ea8d-4fda-8d93-7795abf41c7b","keyword":"高速线材轧制","originalKeyword":"高速线材轧制"}],"language":"zh","publisherId":"gt200610011","title":"热线理论计算线材精轧机组的温升","volume":"41","year":"2006"},{"abstractinfo":"基于热线理论提出计算高速线材轧制温升的新方法。由于线材精轧轧制速度快,散热条件差,可认为轧制过程是绝热的,线材轧制外功几乎全部转换为热。线材温升的热量全部来自于变形区内的速度不连续线所做的剪切功率,称此速度不连续线为热量分布线(热线)。道次温升为变形区内全部热线温升的总和,在假定道次变形中椭圆长轴或短轴不变条件下推导出高速线材精轧机组温升计算公式。对6.5 mm线材精轧进行了实际温升计算与测量,结果表明:计算的理论温升略低于实际测量温升,线材精轧入口温度越低,出口累计温升越大。","authors":[{"authorName":"赵德文","id":"87a7f2a3-97a2-4a8a-83e0-4cb0d504e4a3","originalAuthorName":"赵德文"},{"authorName":"白雪峰","id":"775ef5d6-ca1e-4614-b4ad-23f5d4403e09","originalAuthorName":"白雪峰"},{"authorName":"王晓文","id":"bf89b772-19cc-4e9a-88bd-3e99f0910dc7","originalAuthorName":"王晓文"},{"authorName":"刘相华","id":"784fc253-a37f-4a4f-be93-dfd36fa1b5e3","originalAuthorName":"刘相华"},{"authorName":"王国栋","id":"0209b175-ee4f-45f6-97a8-b7c726827c0e","originalAuthorName":"王国栋"}],"categoryName":"|","doi":"","fpage":"42","id":"8e8f140d-f744-4883-bccc-e3a7cc615124","issue":"10","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"4a4020e0-95d5-4c73-b9b4-96b1daf408bc","keyword":"热线;速度不连续线;剪切功率;温升;高速线材轧制","originalKeyword":"热线;速度不连续线;剪切功率;温升;高速线材轧制"}],"language":"zh","publisherId":"0449-749X_2006_10_1","title":"热线理论计算线材精轧机组的温升","volume":"41","year":"2006"}],"totalpage":98,"totalrecord":975}