欢迎登录材料期刊网

材料期刊网

高级检索

A systematic study on the geometric structures, relative stabilities, and electronic properties of small bimetallic Au (n) Na (n = 1-9) clusters has been performed by means of first-principle density functional theory calculations at the PW91PW91 level. The results show that the optimized ground-state isomers adopt planar structures up to n = 5, and the Na-capped geometries are dominant growth patterns for n = 6-9. Dramatic odd-even alternative behaviors are obtained in the second-order difference of energies, fragmentation energies, highest occupied-lowest unoccupied molecular orbital energy gaps, and chemical hardness for both Au (n) Na and Au (n+1) clusters. It is found that Au5Na and Au-6 have the most enhanced stability. Here, the size evolutions of the theoretical ionization potentials are in agreement with available experimental data, suggesting a good prediction of the lowest energy structures in the present study. In addition, the charge transfer has been analyzed on the basis of natural population analysis.

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%