{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文通过错流过滤方式下的流动电势测量对氧化铝微滤膜的电动性能进行表征,研究了过滤介质溶液pH、电解质种类和浓度等对膜的电动性能的影响.结果表明,膜流动电势大小取决于过滤溶液pH、电解质溶液种类和浓度.采用浓度为10-3M 的NaCl溶液为过滤介质时,膜的等电点为6.1,而采用相同浓度的CaCl2 和Na2SO4溶液时,由于对Ca2+和SO42-的特定吸附,膜等电点分别增大至6.8和减小至5.6.由于Ca2+和SO42-在膜孔表面存在特定吸附,溶液离子浓度提高导致膜的等电点和表面净电荷符号改变,而NaCl溶液浓度提高仅使膜流动电势逐渐减小,但等电点不变.","authors":[{"authorName":"张小珍","id":"924925d1-dafa-4f40-b4df-db2f323ff4a9","originalAuthorName":"张小珍"},{"authorName":"周健儿","id":"5bf7a491-7b94-488d-a48f-b89b9a9fa428","originalAuthorName":"周健儿"},{"authorName":"冯均利","id":"6b5a966d-07d3-4506-9371-529be1d73a39","originalAuthorName":"冯均利"},{"authorName":"江瑜华","id":"2457feb3-2e12-4fcc-add2-1f30d02c6a75","originalAuthorName":"江瑜华"}],"doi":"","fpage":"340","id":"3d7198b3-7b56-4469-b62d-a8f8573443b8","issue":"2","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"1537df17-afc6-4cbe-b4df-32c18bc100f0","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"a77dec56-54ee-45cb-97b6-bdd0eabf34fd","keyword":"微滤膜","originalKeyword":"微滤膜"},{"id":"63912396-3ad6-4da3-8a3b-54fac1626180","keyword":"流动电势","originalKeyword":"流动电势"},{"id":"fb9052d5-9c34-4f8c-8c8d-f3e370cf79b8","keyword":"等电点","originalKeyword":"等电点"},{"id":"079fbb2b-bfb8-4379-ab11-921d6c79bbed","keyword":"电解质","originalKeyword":"电解质"}],"language":"zh","publisherId":"rgjtxb98200902012","title":"流动电势测量法表征Al2O3微滤膜的表面电荷性能","volume":"38","year":"2009"},{"abstractinfo":"为考察电解质溶液中不同离子在膜表面的吸附作用,采用自制的截留相对分子质量40 000的PVDF中空纤维超滤膜进行电性能和渗透性能表征.由于PVDF无可离子化基团或固有电荷,可大大简化模型,因而考察了膜在1 mmol/L四种不同类型电解质(阴阳离子价态)KCl(1:1),K2SO4(1:2),MgCl2(2:1)和MgSO4(2:2)溶液中不同pH下的zeta电势.结果发现:在pH 3~9之间,膜在MgCl2,MgSO4,KCl和K2SO4溶液中的等电点分别为7.4,7.0,6.9和5.5.这是由于膜表面吸附离子的迁移速率不同造成的.离子的化合价和水合离子半径对离子迁移速率的影响非常大.迁移速率更快的离子可在膜表面吸附得更多,并产生一层过量的离子层,对膜表面电荷的影响力更大.不同离子的迁移速率决定了膜不同的等电点.膜在电解质溶液中的截留结果与相应的zeta电势吻合.在等电点附近的截留为零,而往两侧逐渐升高.膜的通量在等电点处最大,往两侧逐渐降低.","authors":[{"authorName":"鲍文烜","id":"b16f480a-7ff1-4c8f-b927-c5906f989219","originalAuthorName":"鲍文烜"},{"authorName":"许振良","id":"01aa2c8c-0c51-4ac7-aa28-27237e65397e","originalAuthorName":"许振良"},{"authorName":"杨虎","id":"a4e3b2e3-dc4c-4919-8fd7-d5dbfac57af9","originalAuthorName":"杨虎"}],"doi":"10.3969/j.issn.1007-8924.2009.05.010","fpage":"49","id":"cc9d9c57-dd8b-474e-b0bb-118be93236a8","issue":"5","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"56f70863-0a19-469a-885e-0a8fd018cc56","keyword":"聚偏氟乙烯","originalKeyword":"聚偏氟乙烯"},{"id":"da42abe3-346f-4502-a5a1-f3b5aa47d0c5","keyword":"超滤","originalKeyword":"超滤"},{"id":"057028f7-74c2-44a9-b7b5-39465a61bdf0","keyword":"流动电势","originalKeyword":"流动电势"},{"id":"cca9ab03-30e2-4f39-bf62-7ec941a8f5a9","keyword":"等电点","originalKeyword":"等电点"},{"id":"6e44d0aa-9d3a-4068-b525-966f27cd4f54","keyword":"渗透性能","originalKeyword":"渗透性能"}],"language":"zh","publisherId":"mkxyjs200905010","title":"非荷电膜表面离子吸附对其等电点和渗透性能的影响","volume":"29","year":"2009"},{"abstractinfo":"研究了冷轧IF钢板镀锌前后的热电势(TEP)特性。试 验结果表明:镀锌退火后,钢板基体发生再结晶导致TEP值升高,而镀层的形成导致TE P值下降,基体的再结晶起主导作用。并且,TEP值存在各向异性,这与钢板的织构有关 。","authors":[{"authorName":"章跃","id":"2e3efe97-779c-4883-8684-cede7056ef35","originalAuthorName":"章跃"},{"authorName":"","id":"61aa82bd-95e7-431b-a2c4-60b93d25b356","originalAuthorName":""},{"authorName":"","id":"748d62d7-9b7b-4c58-937c-fbbfc32a7809","originalAuthorName":""}],"doi":"10.3969/j.issn.1000-3738.2001.02.010","fpage":"32","id":"1d766474-676c-46f4-bbc0-51ba1f305247","issue":"2","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"8ea45eec-14dc-4af6-b0a8-466c3988fc00","keyword":"镀锌","originalKeyword":"镀锌"},{"id":"4d4291f6-1112-400d-b653-18c44cc075a0","keyword":"热电势","originalKeyword":"热电势"},{"id":"6d481d4a-808c-4ed8-8d85-858ec9553e2e","keyword":"IF钢板","originalKeyword":"IF钢板"},{"id":"8d58c183-bb3f-42cb-b79e-1d58fb4d1213","keyword":"织构","originalKeyword":"织构"},{"id":"1dbd074e-f875-4341-b3bc-d01fb5cf5063","keyword":"各向异性","originalKeyword":"各向异性"}],"language":"zh","publisherId":"jxgccl200102010","title":"IF钢板镀锌前后热电势的测定","volume":"25","year":"2001"},{"abstractinfo":"采用动电势扫描法测定了不同体系中碳钢发生点蚀的临界电势Eb.结果表明:当Cl-浓度<0.01 mol/L时,随Cl-浓度增加,临界电势负移并与Cl-浓度成线性关系;pH值在7~11之间,随pH值增加,临界电势正移并与pH值成线性关系;随温度增加,临界电势负移并与温度成线性关系.","authors":[{"authorName":"谷宁","id":"41fe6ee4-39de-48d6-bce8-49e4ee1df553","originalAuthorName":"谷宁"},{"authorName":"李春梅","id":"ac910de9-c2fd-4a86-a684-52821e47e158","originalAuthorName":"李春梅"}],"doi":"10.3969/j.issn.1001-1560.2002.07.008","fpage":"20","id":"13dfb17b-9941-4966-8a34-19687993559b","issue":"7","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"2f3e3799-c5a1-429a-ba72-dd788cc58634","keyword":"碳钢","originalKeyword":"碳钢"},{"id":"08c3dfa2-1472-40ad-9488-3a3636f93bf1","keyword":"点蚀临界电势","originalKeyword":"点蚀临界电势"},{"id":"015d70a8-49cd-43ab-8a77-2acd7e497a96","keyword":"阳极极化曲线","originalKeyword":"阳极极化曲线"}],"language":"zh","publisherId":"clbh200207008","title":"环境因素对碳钢点蚀临界电势的影响","volume":"35","year":"2002"},{"abstractinfo":"根据化学势绘制了室温下在55%LiBr溶液中CuBr-H2O体系的铜的电势-pH图和腐蚀-免蚀-钝化条件图.结果表明,水溶液中Br-离子浓度增大后,Cu2O的稳定存在区域明显减小,CuBr的生成电势负移,溶解电势正移,且其稳定存在区域明显拓宽,导致了铜的免蚀和钝化区域的缩小,腐蚀加剧.电势-pH图的建立对研究高浓度LiBr溶液中铜及其合金的腐蚀行为有一定的参考价值.\n\n","authors":[{"authorName":"梁成浩","id":"c3c98491-ec18-46fb-8bed-795528ea74e4","originalAuthorName":"梁成浩"},{"authorName":"黄乃宝","id":"c2964c20-ff1a-4072-be92-e8a05500c8a1","originalAuthorName":"黄乃宝"},{"authorName":"扈显琦","id":"9620ee11-4d4b-4421-b57a-6f70734dd8a5","originalAuthorName":"扈显琦"}],"categoryName":"|","doi":"","fpage":"157","id":"bd841e4b-17f7-47a2-a07d-703761c7924b","issue":"3","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"1a083a29-0af3-4e48-82be-e62892b2a4f5","keyword":"铜","originalKeyword":"铜"},{"id":"78e17670-2882-4e3d-a062-1648a43987a9","keyword":"null","originalKeyword":"null"},{"id":"5e5dbd04-3318-4870-8180-08470fcf849b","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1002-6495_2006_3_6","title":"铜在55%LiBr溶液中的电势-pH图","volume":"18","year":"2006"},{"abstractinfo":"根据化学势绘制了室温下在55%LiBr溶液中Cu-Br--H2O体系的铜的电势-pH图和腐蚀-免蚀-钝化条件图.结果表明,水溶液中Br-离子浓度增大后,Cu2O的稳定存在区域明显减小,CuBr的生成电势负移,溶解电势正移,且其稳定存在区域明显拓宽,导致了铜的免蚀和钝化区域的缩小,腐蚀加剧.电势-pH图的建立对研究高浓度LiBr溶液中铜及其合金的腐蚀行为有一定的参考价值.","authors":[{"authorName":"梁成浩","id":"08a24bc1-3ac6-4342-8777-bae4e4839050","originalAuthorName":"梁成浩"},{"authorName":"黄乃宝","id":"55dd15c2-e767-4fda-a321-c90cb4ea0140","originalAuthorName":"黄乃宝"},{"authorName":"扈显琦","id":"49d3bafe-55ca-4997-aeaf-9a8a7b275bad","originalAuthorName":"扈显琦"}],"doi":"10.3969/j.issn.1002-6495.2006.03.001","fpage":"157","id":"4a0be248-4519-4888-bf4e-381e1e94f530","issue":"3","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"f5832eb2-4771-4e1c-b0a3-b3434fc1f066","keyword":"铜","originalKeyword":"铜"},{"id":"37824957-dc6a-425f-b95f-95fa7ccf7484","keyword":"溴化锂","originalKeyword":"溴化锂"},{"id":"c797c15f-e9cb-4a4d-9d54-74fdfb64d51c","keyword":"电势-pH图","originalKeyword":"电势-pH图"}],"language":"zh","publisherId":"fskxyfhjs200603001","title":"铜在55%LiBr溶液中的电势-pH图","volume":"18","year":"2006"},{"abstractinfo":"测试了 MESFET工艺条件下制作的霍尔片的基本性能.对设计出的 GaAs集成霍尔元件进 行了不等位电势的测试,采用霍尔元件并联和自旋电流的方法对 GaAs方形霍尔元件的不等位电 势进行了静态和动态调制消除.实验结果表明 GaAs霍尔元件的不等位电势引起的偏差可以控制 在可以忽略的范围内.","authors":[{"authorName":"冯明","id":"24062db3-7338-45b8-81cd-f283779c9f42","originalAuthorName":"冯明"},{"authorName":"夏冠群","id":"f470c648-4c11-4f53-8786-8127cc573aee","originalAuthorName":"夏冠群"},{"authorName":"胡少坚","id":"b72626fd-60ee-4827-b340-1c2167a46558","originalAuthorName":"胡少坚"}],"doi":"10.3969/j.issn.1007-4252.2004.04.012","fpage":"455","id":"a767d909-c153-4f41-8e02-83c87bee360b","issue":"4","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"1f2278b5-88b2-4b64-8ae6-9c0b6340ad47","keyword":"霍尔效应","originalKeyword":"霍尔效应"},{"id":"4a9ee7d5-a783-49d4-a18c-c7610fe6b431","keyword":"磁传感器","originalKeyword":"磁传感器"},{"id":"6c409367-91c7-4fa1-8e4e-9b9aba54281a","keyword":"不等位电势","originalKeyword":"不等位电势"}],"language":"zh","publisherId":"gnclyqjxb200404012","title":"GaAs霍尔元件不等位电势的调制消除","volume":"10","year":"2004"},{"abstractinfo":"利用电阻率及热电势等物理性质研究液态金属及液态合金的前提是得到高精度的数据,而数据精度取决于测量方法.主要介绍了测量电阻率所常用的接触法和非接触法,测量热电势的微差法及各种方法的优缺点.","authors":[{"authorName":"王强","id":"7a7b2b31-fee3-489a-b5d0-f5b18dd691b7","originalAuthorName":"王强"},{"authorName":"李言祥","id":"a081686d-45cb-42e6-a125-18b41df53541","originalAuthorName":"李言祥"}],"doi":"","fpage":"10","id":"c2a97d54-85bc-44d7-b94f-952f3997370d","issue":"11","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"d3f5c17c-dacd-4b28-9fed-1ed3f83420ec","keyword":"液态金属","originalKeyword":"液态金属"},{"id":"748eef15-32fd-4d4b-961b-f965b1dbfb38","keyword":"电阻率","originalKeyword":"电阻率"},{"id":"f3ecd620-e055-427c-9192-236e156b4769","keyword":"热电势","originalKeyword":"热电势"},{"id":"f3394e5e-eae7-42c5-bd44-decb49a1825a","keyword":"测量方法","originalKeyword":"测量方法"}],"language":"zh","publisherId":"cldb200111004","title":"液态金属电阻率及热电势的测量","volume":"15","year":"2001"},{"abstractinfo":"我们用磁控溅射的方法制备了一系列无序度不同的Au50Pd50膜.在13K~300K的温度范围内,我们对不同无序度Au50Pd50膜的电阻率、热电势作了系统的测量,发现热电势随无序度的增加而减小,其温度依赖关系与同种成份的晶态合金的热电势温度依赖关系也很不相同.本文初步分析和讨论了其物理原因.","authors":[{"authorName":"景秀年","id":"d0de9e6e-58dd-4fc3-aeb3-aa8f4cc23453","originalAuthorName":"景秀年"},{"authorName":"李山林","id":"b63e4aa4-56ce-44fa-9324-8e5127c13f0a","originalAuthorName":"李山林"},{"authorName":"吕力","id":"74d8325b-5cab-4a40-9514-d61bf0ebacc1","originalAuthorName":"吕力"},{"authorName":"张殿琳","id":"6861f72b-4ed3-42aa-9750-27958ecdf003","originalAuthorName":"张殿琳"},{"authorName":"林志忠","id":"18b12996-4679-490e-9c2e-8f2ec7481bcf","originalAuthorName":"林志忠"}],"doi":"10.3969/j.issn.1000-3258.2002.02.010","fpage":"125","id":"94b5aea2-6626-4e40-b46b-930a9e942e63","issue":"2","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"64434416-df76-4f39-ad10-662f31d7b281","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"dwwlxb200202010","title":"无序度对Au/Pd膜热电势的影响","volume":"24","year":"2002"},{"abstractinfo":"本文用交流电桥法测定了450℃时LiCl-KCl熔盐中某些固态金属的双层电容(C)和电压(V)的关系。C-V曲线的最低点估计了Pt,Ag,Cu和Al等四种金属的零电荷电势,它们分别为+0.2,-0.4,-0.6和1.0V。 把本文测得的450℃时LiCl-KCl熔盐中四种金属的零电荷电势(ε),和文献中700℃时NaCl-KCl熔盐中的结果对应于各金属的电离自由能(△Z_2)作图,可得一直线。它平行于水溶液中的相应直线,并可以下式表示: ε=0.305(△Z_2/q)+A 这一结果表明,在二种氯化物熔盐中同种金属的零电荷电势无明显差别,和不同金属的零电荷电势之间的差别与水溶液中相似。因此,可以认为,熔盐中固态金属的零电荷电势仅与金属的本性有关。","authors":[{"authorName":"彭瑞伍","id":"cffa6db4-4bd2-4c83-a61f-a1380a4b9812","originalAuthorName":"彭瑞伍"},{"authorName":"张俊岳","id":"c4f16ba8-2c5e-45e7-9ef6-c26b0f14a0df","originalAuthorName":"张俊岳"}],"categoryName":"|","doi":"","fpage":"72","id":"585e146a-c901-4be9-a3af-ef6eb109c7c0","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[],"language":"zh","publisherId":"0412-1961_1983_3_16","title":"关于熔盐中固态金属的零电荷电势","volume":"19","year":"1983"}],"totalpage":691,"totalrecord":6904}