{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用企业、行业及国家相关标准的试验方法,对超码复合材料公司,英国Dunlop公司,法国Carbon Industy公司,美国B.F.Goodrich、ALS公司等生产的9种C/C复合材料飞机刹车盘的物理、力学、热学、摩擦磨损的性能特征,以及中南大学生产的C/C复合材料刹车盘的有关性能,进行了对比分析.结果表明,选择适宜的炭纤维预制体结构,控制热解炭基体微观结构为光学粗糙层结构,合理的热处理温度是获得高性能炭刹车盘材料的关键.我国拥有自主知识产权研发的大型民机炭刹车盘在高摩擦特性方面获得了重大突破,已用于波音757-200型飞机,实现了国内C/C复合材料具有里程碑意义的第四个重大突破.","authors":[{"authorName":"苏君明","id":"c3d83088-33da-411f-a93a-398a79ea84c5","originalAuthorName":"苏君明"},{"authorName":"杨军","id":"f0b56869-fb60-4456-83f0-fdef2fc00856","originalAuthorName":"杨军"},{"authorName":"肖志超","id":"c78fd234-251b-4323-8882-bc25eaf6f9ec","originalAuthorName":"肖志超"},{"authorName":"周绍建","id":"ff6f238a-8644-4b70-a16d-b5ca969707a7","originalAuthorName":"周绍建"},{"authorName":"彭志刚","id":"fef89f93-04bc-41f4-8fce-073327a913ff","originalAuthorName":"彭志刚"},{"authorName":"辛建国","id":"601c6d4b-9d6e-4824-9e88-14cbb4e58efd","originalAuthorName":"辛建国"},{"authorName":"","id":"f08afd3d-5d95-4ad6-8214-5150e4bf06b2","originalAuthorName":"李睿"},{"authorName":"韩媚","id":"024cdbeb-3b86-4f07-8b83-e51bc9a16174","originalAuthorName":"韩媚"},{"authorName":"赵胜利","id":"2d9b33ca-fb8f-4029-892d-28e2f57d9ee4","originalAuthorName":"赵胜利"},{"authorName":"谷立民","id":"6d762ded-f1bd-4afd-884d-5b07386785af","originalAuthorName":"谷立民"}],"doi":"10.3969/j.issn.1007-8827.2006.01.015","fpage":"81","id":"845703cc-f619-41de-9698-9a065c7b3878","issue":"1","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"6a071d1a-abb5-427d-b66a-6e5a97fccc56","keyword":"飞机炭刹车盘","originalKeyword":"飞机炭刹车盘"},{"id":"117f7e3f-7931-4684-bebe-737470f14c5f","keyword":"C/C复合材料","originalKeyword":"C/C复合材料"},{"id":"ec85d70c-3571-411b-9559-70680847991e","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"10b2a163-d9ed-4e4c-adc6-d530b1ffbfa6","keyword":"热学性能","originalKeyword":"热学性能"},{"id":"78ff5fb7-7883-44ac-a90c-03c877aabb1f","keyword":"摩擦磨损特性","originalKeyword":"摩擦磨损特性"}],"language":"zh","publisherId":"xxtcl200601015","title":"C/C复合材料飞机刹车盘的结构与性能","volume":"21","year":"2006"},{"abstractinfo":"对水溶性的γ-聚谷氨酸(y-PGA)进行接枝改性,合成了两亲性胆甾醇基γ-PGA衍生物;通过红外光谱(FT-IR)及核磁共振(1H-NMR)对其结构进行了表征和确证;并采用超声探头法制备得胆甾醇基γ-PGA自组装胶束.在中性介质条件下,形成的胶束在透射电镜下观察呈规则球状,平均粒径为(299.6±5.4)nm,粒径的多分散系数(PDI)为0.17.实验表明,两亲性胆甾醇基γ-PGA自组装体的形成是分子内分子间疏水作用力、分子带电情况和分子柔性变化等协同作用的结果,而介质pH是重要的影响因素,其形成的核壳结构可作为疏水药物和大分子药物的载体.","authors":[{"authorName":"","id":"d47b4957-1cec-4f42-8ce7-899ca0ea8f5a","originalAuthorName":"李睿"},{"authorName":"阮文辉","id":"3bdf4a69-4cdd-40ab-9540-fcda8f6a920e","originalAuthorName":"阮文辉"},{"authorName":"姚俊","id":"d37fac43-bdbc-4c49-b578-f792ffd4fe9d","originalAuthorName":"姚俊"},{"authorName":"陈宽婷","id":"3caab7ee-7c0f-413f-89a3-0d4d13542614","originalAuthorName":"陈宽婷"},{"authorName":"魏钦俊","id":"424d27dc-1c80-4b73-9224-5e58849ed117","originalAuthorName":"魏钦俊"},{"authorName":"鲁雅洁","id":"adb5bddb-8bde-4f62-a5b2-3842eb523ea6","originalAuthorName":"鲁雅洁"},{"authorName":"曹新","id":"dda50f4a-ef74-48ec-a9e9-7e819ad6ce46","originalAuthorName":"曹新"}],"doi":"","fpage":"11","id":"7e94412d-cbb0-4d51-a5b8-7fca572db2c7","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"6dac9b8f-0463-4430-8846-f76a177eadc9","keyword":"γ-聚谷氨酸","originalKeyword":"γ-聚谷氨酸"},{"id":"5a0acae0-02a4-40df-b865-9cabbfaa0abb","keyword":"两亲性聚合物","originalKeyword":"两亲性聚合物"},{"id":"b7cb6266-4ec2-46ba-8b6a-7ec2d3259c3b","keyword":"自组装","originalKeyword":"自组装"},{"id":"7f1b84fa-b243-457c-8e06-96c729fc19cb","keyword":"纳米胶束","originalKeyword":"纳米胶束"}],"language":"zh","publisherId":"gfzclkxygc201401003","title":"γ-聚谷氨酸胆甾醇基衍生物自组装纳米胶束的制备与表征","volume":"30","year":"2014"},{"abstractinfo":"本文分析了一种静态随机存储器单比特位失效的机理.通过纳米探针测量,发现该比特位写操作失败是由负责存取的N型晶体管的驱动力较弱导致.TEM分析显示该晶体管的多晶硅栅中晶粒尺寸较大,这有可能导致栅的功函数变化以及靠近栅介质层区域的掺杂较轻.我们用SPICE模拟证实了晶体管驱动力变弱的原因是局域的多晶栅耗尽.","authors":[{"authorName":"","id":"566d106d-9c64-45e3-a88a-b433f2e086e8","originalAuthorName":"李睿"},{"authorName":"王俊","id":"89ad746e-2560-4c47-82b7-21102c742857","originalAuthorName":"王俊"},{"authorName":"孔蔚然","id":"9a66e526-4d18-4b0a-99fa-85105a06a393","originalAuthorName":"孔蔚然"},{"authorName":"马惠平","id":"27ed13b3-ac52-450b-8e25-711c54c33458","originalAuthorName":"马惠平"},{"authorName":"浦晓栋","id":"9c89d9f9-a533-4d7e-9ca2-11ddbb93b2b8","originalAuthorName":"浦晓栋"},{"authorName":"莘海维","id":"22bd4360-9873-4edf-9348-7cc7c40057d0","originalAuthorName":"莘海维"},{"authorName":"王庆东","id":"1fac625d-4ddf-435d-b1c9-7df4f4112fd3","originalAuthorName":"王庆东"}],"doi":"10.3969/j.issn.1007-4252.2008.05.014","fpage":"923","id":"cf9fd585-50ff-4985-a69a-a9c35fc4fabc","issue":"5","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"032a1b53-5735-4b9c-8b6f-ae869c7e4f86","keyword":"静态随机存储器","originalKeyword":"静态随机存储器"},{"id":"7283190c-ad17-48e1-9082-01ada6e81f16","keyword":"单比特位失效","originalKeyword":"单比特位失效"},{"id":"4e8ed1b1-dde6-43a3-b65b-753784295388","keyword":"多晶硅栅耗尽","originalKeyword":"多晶硅栅耗尽"}],"language":"zh","publisherId":"gnclyqjxb200805014","title":"多晶硅栅耗尽导致的SRAM单比特位失效分析","volume":"14","year":"2008"},{"abstractinfo":"采用失重法、开路电位、电化学阻抗谱(EIS)、极化曲线等方法,通过在海洋环境中浸泡不同时间对比分析有无硫酸盐还原菌(SRB)条件下Q235钢的腐蚀电化学特征,研究SRB对Q235钢的腐蚀行为的影响.结果表明,在含SRB的海水中,随着浸泡时间延长,Q235钢的腐蚀电流密度先从7.49 mA·cm-2增加至9.77 mA·cm-2,然后逐渐减小至5.01 mA·cm-2,最终增加至12.6 mA·cm-2,且始终小于相同时间下无SRB海水中的腐蚀电流密度,表明SRB的存在抑制了Q235的腐蚀.在含SRB的海水中,Q235钢的腐蚀行为主要由Cl-和生物膜共同影响.在SRB稳定生长阶段,腐蚀以生物膜抑制为主;在SRB指数生长阶段和衰亡阶段,生物膜抑制作用较弱,以Cl-促进金属腐蚀为主.","authors":[{"authorName":"谢飞","id":"45722521-ecc2-4e6f-b6e6-df91aab415f1","originalAuthorName":"谢飞"},{"authorName":"王丹","id":"4088c978-5643-49a7-9f29-047dc81725e7","originalAuthorName":"王丹"},{"authorName":"吴明","id":"cf6778ed-558d-4c1c-b5a7-0229338dbaa6","originalAuthorName":"吴明"},{"authorName":"宗月","id":"2e8b18cd-f8d1-4922-bf88-bf08ccdc516f","originalAuthorName":"宗月"},{"authorName":"袁世娇","id":"3cd317b9-a494-4fcf-95fd-7fa97318271d","originalAuthorName":"袁世娇"},{"authorName":"申红娟","id":"c0b0b903-030e-4227-9319-95f4511a855b","originalAuthorName":"申红娟"},{"authorName":"","id":"775aeb58-f458-4406-9f2d-fae58f59d603","originalAuthorName":"李睿"}],"doi":"10.11896/j.issn.1005-023X.2017.08.011","fpage":"51","id":"103cef65-f330-486c-9304-001fe4b62ebb","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"1e2abc2f-b5a7-46a2-abaf-6077f4b176e1","keyword":"Q235钢","originalKeyword":"Q235钢"},{"id":"0edfa190-b55e-41b6-877c-8e45efd2f18f","keyword":"海水","originalKeyword":"海水"},{"id":"b0c62612-176f-41a2-888c-c4d54eaafcfb","keyword":"微生物腐蚀","originalKeyword":"微生物腐蚀"},{"id":"f8fd2df9-c780-4f27-8362-5644acb949ce","keyword":"硫酸盐还原菌","originalKeyword":"硫酸盐还原菌"},{"id":"1276f525-9208-4a28-a8d9-b9b7f121ba5d","keyword":"极化曲线","originalKeyword":"极化曲线"}],"language":"zh","publisherId":"cldb201708011","title":"海洋硫酸盐还原菌对Q235钢腐蚀行为的影响","volume":"31","year":"2017"},{"abstractinfo":"三山岛金矿新立矿区属于中国第一个海底开采的金属矿山.矿区开采的关键是确保在开采过程中海底不产生非均匀沉降、裂缝和塌陷.根据新立矿区开采技术条件,选择了63#、71#和79#3个具有代表性的试验采场.71#采场选择了高进路充填采矿法,79#采场选择了房柱式分层充填采矿法,对海底矿床安全开采进行全面的研究.试验结果表明,高进路充填采矿法具有作业安全、贫化损失小等显著特征;房柱式分层充填采矿法具有作业面多、单位面积开采强度大、采矿效率高等显著优点,大幅度提高了采矿生产能力.这2种开采技术方案对海底矿床开采具有重大意义,是实现海底矿床高效、低贫损开采的关键技术.","authors":[{"authorName":"乔卫国","id":"c57acb43-3cc1-4b52-ad3f-8b3271179b08","originalAuthorName":"乔卫国"},{"authorName":"吕言新","id":"6ec19152-e329-4dc5-a273-8a02f8c69750","originalAuthorName":"吕言新"},{"authorName":"","id":"176d17ba-4ccf-4236-b97d-485e3b4f8142","originalAuthorName":"李睿"},{"authorName":"林登阁","id":"4d60f636-e283-4b87-a35d-bc0e1b2f2fc7","originalAuthorName":"林登阁"},{"authorName":"王平","id":"22b22ddd-7ab9-4447-ba53-1f3abbf7a1c2","originalAuthorName":"王平"}],"doi":"10.3969/j.issn.1001-1277.2011.07.007","fpage":"30","id":"1823aad0-f1dc-4fb6-958d-7a9f156fafd9","issue":"7","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"db1b1fc0-5568-4b5d-8ba1-5cd8c66c2ccb","keyword":"海底金矿床","originalKeyword":"海底金矿床"},{"id":"14165f01-7bec-4ca1-aa25-6dea2b627b28","keyword":"高进路充填","originalKeyword":"高进路充填"},{"id":"110f299b-d79d-449d-9691-79ba86b1f864","keyword":"岩层微扰","originalKeyword":"岩层微扰"},{"id":"6226514a-c86d-4739-80e7-a902a6e411fb","keyword":"房柱式分层充填","originalKeyword":"房柱式分层充填"}],"language":"zh","publisherId":"huangj201107007","title":"海底金属矿床安全高效开采工业试验","volume":"32","year":"2011"},{"abstractinfo":"针对卫星太阳帆板驱动机构对恶劣环境下零件粘接的应用需求,研制开发了一种双组份环氧胶黏剂KH-A.KH-A浇铸体的Tg为143℃,KH-A粘接45#钢时,其25℃时的拉剪强度为23.0 MPa,125℃时达到20.9 MPa.固化样片经1×108 rad γ-射线(60Co)辐照后,击穿强度由20.1升高到25.2 kV/mm.KH-A浇铸体在真空下的总质量损失(TML)为0.97%,可凝挥发物含量(CVCM)为0.01%.KH-A各项性能指标均满足产品设计要求.","authors":[{"authorName":"孟宪刚","id":"155c52b3-ba13-4d45-a51e-44856a5eda5f","originalAuthorName":"孟宪刚"},{"authorName":"","id":"dd7605c2-a3eb-4194-bff4-ef168e424710","originalAuthorName":"李睿"},{"authorName":"卞茵佳","id":"f8679070-22ec-4a9c-834b-fc3984dc39fe","originalAuthorName":"卞茵佳"},{"authorName":"刘金刚","id":"86b7146a-0415-472b-8107-9c75cba210c6","originalAuthorName":"刘金刚"}],"doi":"10.3969/j.issn.1007-2330.2015.01.011","fpage":"43","id":"62b76bae-97c7-4cd3-a904-9581bbc2be5c","issue":"1","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"a13d937c-b210-4283-a0d7-fb2659cb8389","keyword":"太阳帆板驱动机构","originalKeyword":"太阳帆板驱动机构"},{"id":"6907f167-bb89-4c14-8978-f7bbc71df11d","keyword":"胶黏剂","originalKeyword":"胶黏剂"},{"id":"b5ad182a-894c-4282-99ec-4dc856944d34","keyword":"Tg","originalKeyword":"Tg"},{"id":"1e4af93a-5773-4054-85bf-e54bc9475114","keyword":"γ-射线(60Co)辐照","originalKeyword":"γ-射线(60Co)辐照"},{"id":"b8d861d9-ee24-43a2-94a8-e29c08f5f533","keyword":"真空挥发性能","originalKeyword":"真空挥发性能"}],"language":"zh","publisherId":"yhclgy201501011","title":"太阳帆板驱动机构用KH-A胶黏剂制备及性能","volume":"45","year":"2015"},{"abstractinfo":"采用SnPb、InPb和InPbAg三种钎料对航天器控制系统中的AuNi9刷丝进行了钎焊试验,对钎焊接头的力学性能、断口形貌以及微观组织、化合物相成分进行对比分析,探讨改进后钎料对钎焊接头化合物层形成的影响.结果表明,SnPb钎料钎焊AuNi9刷丝接头区域靠近金合金一侧产生了明显的化合物,主要包括:AuSn4及AuNi2Sn4和Ni3Sn4化合物相.InPb钎料能明显降低钎焊接头脆性,接头区域未发现金属间化合物的产生.InPbAg钎料不仅能保护铜导线的镀银层,而且钎焊接头还会产生细小的强化相Ag2In,增强接头剪切强度.","authors":[{"authorName":"李敏雪","id":"17ab26a8-93bf-4b42-9210-1e46b7acff0a","originalAuthorName":"李敏雪"},{"authorName":"曲文卿","id":"775fe1a0-7cf9-4f73-9739-022e13dc863f","originalAuthorName":"曲文卿"},{"authorName":"代国琴","id":"29a59273-4052-45e9-9d63-d02f3e619705","originalAuthorName":"代国琴"},{"authorName":"杨淑娟","id":"9322a2b4-79c8-4d7a-90ae-d374f97894c1","originalAuthorName":"杨淑娟"},{"authorName":"","id":"b3e1f4f3-5e34-423f-b35f-036c4893feb2","originalAuthorName":"李睿"}],"doi":"10.3969/j.issn.1007-2330.2015.01.019","fpage":"73","id":"6791fee6-2eed-4168-9889-946a08e97516","issue":"1","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"f833ede0-e358-4194-a063-08112c579db1","keyword":"AuNi9合金","originalKeyword":"AuNi9合金"},{"id":"666bf00a-1a9a-44cd-9c54-cb9659cf25dc","keyword":"锡铅钎料","originalKeyword":"锡铅钎料"},{"id":"1be5fff3-08b1-432a-81f2-16f8ac81ec12","keyword":"铟铅钎料","originalKeyword":"铟铅钎料"},{"id":"62b24dca-012b-4fa4-a662-dcb871934f57","keyword":"金脆性","originalKeyword":"金脆性"}],"language":"zh","publisherId":"yhclgy201501019","title":"AuNi9导电环刷丝的钎料成分改进及性能分析","volume":"45","year":"2015"},{"abstractinfo":"建立了新的半经验半微分传质传热模型,以苯/N-甲酰吗啉(NFM)水溶液体系为代表,研究了真空膜蒸馏分离去除苯的传质传热过程.并通过数学模拟和实验考察了操作参数对苯的传质通量、去除效率、分离因子以及水传质通量的影响.结果表明,新模型能较好地描述真空膜蒸馏的传质传热过程,能直观地解释实验结果,模拟值与实验值吻合.另外进料浓度、流量、温度及真空度的提高有利于提高苯的传质通量,但不利于提高分离效果.浓度、流量对传质的影响表现为对液相扩散传质能力的增强.温度及真空度对传质的影响表现为对气液界面分压的影响.以上因素的影响最终体现为对扩散组份跨膜分压差的影响.","authors":[{"authorName":"徐军","id":"cfed9235-6c68-411c-9288-40d779886e36","originalAuthorName":"徐军"},{"authorName":"","id":"5aa8edea-d390-4f10-a4db-c74edc390ee2","originalAuthorName":"李睿"},{"authorName":"王连军","id":"c14e5fe1-cdd0-4a7c-87dc-29b35ba1f9e3","originalAuthorName":"王连军"},{"authorName":"李建生","id":"ba3de002-7e3b-4f18-83d9-83da3773a4d4","originalAuthorName":"李建生"},{"authorName":"孙秀云","id":"2006e1c1-6325-4ea0-9048-1efa2bdd4745","originalAuthorName":"孙秀云"}],"doi":"10.3969/j.issn.1007-8924.2010.05.010","fpage":"52","id":"82d299a7-3b1f-4bef-833b-1866b242cca9","issue":"5","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"0230a204-fa8d-4e28-815d-d81586265af1","keyword":"真空膜蒸馏","originalKeyword":"真空膜蒸馏"},{"id":"26029f16-3db4-4223-83fb-c0e7f1b2887f","keyword":"苯","originalKeyword":"苯"},{"id":"5c4d80cf-5a4d-4712-bb5a-cea661304dbd","keyword":"模型","originalKeyword":"模型"},{"id":"a33a4516-edf1-4eea-a0f0-851bf587c381","keyword":"N-甲酰吗啉水溶液","originalKeyword":"N-甲酰吗啉水溶液"}],"language":"zh","publisherId":"mkxyjs201005010","title":"真空膜蒸馏分离苯/N-甲酰吗啉水溶液体系微分模型","volume":"30","year":"2010"},{"abstractinfo":"以疏水性聚丙烯中空纤维膜为气液接触膜,n-甲酰吗啉(n-Formyl morpholine,NFM)水溶液为吸收剂,研究了膜气体吸收技术分离混合气中苯的传质过程,考察了各操作参数对传质过程的影响,建立传质阻力模型,对模型预测值与实验值进行了对比.结果表明:提高气液相流量及浓度、吸收剂浓度,降低吸收液负载有利于提高传质通量.传质过程受液膜控制;在实验条件下,模型预测值与实验值符合较好,最大误差为20.2%,平均误差为9.2%.","authors":[{"authorName":"","id":"25d95b87-990c-42fe-89bd-10b78dbe7c60","originalAuthorName":"李睿"},{"authorName":"徐军","id":"9fe7076c-9a36-455f-a9da-07f280a4e836","originalAuthorName":"徐军"},{"authorName":"张丽珍","id":"59f3937e-3d9d-4225-9fab-e5a536f5196e","originalAuthorName":"张丽珍"},{"authorName":"王连军","id":"1c7f416b-dfdb-48df-b09b-05661b45e759","originalAuthorName":"王连军"},{"authorName":"健生","id":"c5869edf-c4ec-428b-a5ef-bda7e32641c3","originalAuthorName":"李健生"},{"authorName":"孙秀云","id":"5488a8cd-b912-4872-a8df-e4cdeb89a7f2","originalAuthorName":"孙秀云"}],"doi":"10.3969/j.issn.1007-8924.2010.02.010","fpage":"52","id":"978726a2-0999-4840-9332-1c78a6e7a084","issue":"2","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"071a1ef7-cc52-4e91-90c2-36ead7cfbb01","keyword":"苯","originalKeyword":"苯"},{"id":"9be92264-6ea1-40df-afc2-d6c5c70ed185","keyword":"聚丙烯中空纤维膜","originalKeyword":"聚丙烯中空纤维膜"},{"id":"db7783c8-c501-4546-8ffa-db5bfcd012d9","keyword":"膜气吸收","originalKeyword":"膜气吸收"},{"id":"d4fcfc37-caee-4207-b847-941ffda1951e","keyword":"传质模型","originalKeyword":"传质模型"}],"language":"zh","publisherId":"mkxyjs201002010","title":"混合气中C6H6的膜气体吸收分离过程","volume":"30","year":"2010"},{"abstractinfo":"采用气流磨对钨粉进行分散分级处理.研究发现,经气流磨处理后,钨粉的粒度分布变窄,比表面积增加,d10、d50、d90分别由处理前的2.02,4.43,9.95μm变为1.79,3.02,5.54μm,比表面积由1.754 m2/g增大到2.569 m2/g;通过扫描电镜分析发现,原有粉末的团聚现象基本消除,钨粉颗粒变成规则的近球形,分散性能良好;XRD分析表明,处理过程中无杂质新相生成.另外,处理参数对粉末性能有影响,而多次处理会获得粒度更加均匀、形貌更规则、分散性能更好的钨粉.","authors":[{"authorName":"黄化","id":"0a314adc-c124-4723-b9af-693489d73b43","originalAuthorName":"黄化"},{"authorName":"秦明礼","id":"f2d28efb-1111-431e-9959-1330d442faee","originalAuthorName":"秦明礼"},{"authorName":"曲选辉","id":"663e760e-f8e7-41b4-9d86-18e91c4ae0c2","originalAuthorName":"曲选辉"},{"authorName":"","id":"a1a8c10c-9102-408e-900b-73227c96f28b","originalAuthorName":"李睿"}],"doi":"","fpage":"2210","id":"ad69b831-20cb-4525-864a-0c8bb139e4bd","issue":"12","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"4b59f0b6-f11a-4a91-8795-7c78c6b2aa05","keyword":"钨粉","originalKeyword":"钨粉"},{"id":"54507e32-33d6-4135-9af1-9699d6d5718d","keyword":"气流磨","originalKeyword":"气流磨"},{"id":"5c2e3107-7558-4fe6-8385-595c94a1a692","keyword":"分散","originalKeyword":"分散"},{"id":"a13efb72-e456-4744-bd8d-e51590eac85e","keyword":"分级","originalKeyword":"分级"}],"language":"zh","publisherId":"xyjsclygc201212030","title":"气流磨处理钨粉的研究","volume":"41","year":"2012"}],"totalpage":12,"totalrecord":114}