{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"简要介绍了TiSiN纳米复合涂层的晶体结构,主要从涂层的性能、制备方法、硅含量以及其它元素掺杂的影响等方面综述了TiSiN纳米复合涂层的研究进展,最后对其存在的主要问题和今后的发展方向进行了总结和展望.","authors":[{"authorName":"赵永生","id":"8afd9614-f2b5-400e-b9b6-975e7eb35ea4","originalAuthorName":"赵永生"},{"authorName":"李伟","id":"12f086b5-d3e3-4ad4-8449-e57e10f17b85","originalAuthorName":"李伟"},{"authorName":"刘平","id":"05803843-5501-4612-b09b-fa8240c2b706","originalAuthorName":"刘平"},{"authorName":"马凤仓","id":"eaeb9c4e-9d0c-4968-aa94-d664590cd633","originalAuthorName":"马凤仓"},{"authorName":"刘新宽","id":"605b9314-68fe-4716-928e-2aa337e810f9","originalAuthorName":"刘新宽"},{"authorName":"陈小红","id":"3868fa5a-4af2-44bc-abe6-556100ac8d43","originalAuthorName":"陈小红"},{"authorName":"何代华","id":"be8f96c4-453e-492b-8914-06aac1227f08","originalAuthorName":"何代华"}],"doi":"","fpage":"6","id":"2e6d340a-fbd1-4363-80f5-fa0885c5ce8a","issue":"6","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"797de360-1100-4525-bf32-41ddc5be03a4","keyword":"TiSiN涂层","originalKeyword":"TiSiN涂层"},{"id":"76e30033-750d-4a5b-8068-32efb804793d","keyword":"纳米复合结构","originalKeyword":"纳米复合结构"},{"id":"25069368-4748-4043-8cda-751a4535976f","keyword":"制备工艺","originalKeyword":"制备工艺"},{"id":"af228123-569e-4d58-82a8-e74a67b607de","keyword":"研究进展","originalKeyword":"研究进展"}],"language":"zh","publisherId":"jxgccl201306002","title":"TiSiN纳米复合结构涂层的研究进展","volume":"37","year":"2013"},{"abstractinfo":"采用高功率脉冲磁控溅射(HIPIMS)技术在N2流量为10~50 mL/min下沉积TiSiN涂层,利用台阶仪,XRD,XPS,SPM,SEM,HRTEM和纳米压痕仪对涂层的沉积速率、相结构、成分、形貌和力学性能进行了分析,并研究了不同N2流量对等离子体放电特性的影响.结果表明,在不同N2流量下,TiSiN涂层均具有非晶Si3N4包裹纳米晶TiN复合结构,涂层表面粗糙度Ra为0.9~1.7 rnm;随N2流量的增加,等离子体的放电程度减弱,离化率降低,TiSiN涂层沉积速率降低,其Ti含量逐渐降低,Si含量逐渐增加,但变化幅度较小;涂层择优取向随N2流量的增加发生改变,晶粒尺寸逐渐增大,硬度和弹性模量逐渐降低,涂层硬度最高为(35.25±0.74) GPa.","authors":[{"authorName":"王振玉","id":"3e5cbccd-fca9-474c-8fab-e7c34cb8156c","originalAuthorName":"王振玉"},{"authorName":"徐胜","id":"1b014a48-71a0-4a01-bf67-0f7580bc9c46","originalAuthorName":"徐胜"},{"authorName":"张栋","id":"ba1b74c5-7327-439b-a66c-5438eaae0b48","originalAuthorName":"张栋"},{"authorName":"刘新才","id":"51a0c286-3abf-40fd-9d19-31293952eec7","originalAuthorName":"刘新才"},{"authorName":"柯培玲","id":"60737a74-ad93-47f2-944c-36e46ac9bc79","originalAuthorName":"柯培玲"},{"authorName":"汪爱英","id":"f36eed5d-0043-4c6c-a2f8-d302c9afa5b0","originalAuthorName":"汪爱英"}],"doi":"10.3724/SP.J.1037.2013.00698","fpage":"540","id":"b8052b6d-98cb-46f2-9178-a44f2d003761","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"068e1647-9b68-426e-80fb-4cb2206f1d19","keyword":"高功率脉冲磁控溅射","originalKeyword":"高功率脉冲磁控溅射"},{"id":"b44ff3c3-086b-4b97-8f18-d4fee3d092e8","keyword":"TiSiN涂层","originalKeyword":"TiSiN涂层"},{"id":"6ae4dddf-aa8a-409b-a048-deead5496574","keyword":"放电特性","originalKeyword":"放电特性"},{"id":"3d3f02d5-637d-47e7-83f3-3fab031dad60","keyword":"复合结构","originalKeyword":"复合结构"},{"id":"2a659f2b-3eab-4915-b6d8-5ebc1fe3191d","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"jsxb201405004","title":"N2流量对HIPIMS制备TiSiN涂层结构和力学性能的影响","volume":"50","year":"2014"},{"abstractinfo":"目的:在SiH4气氛下制备Si掺杂的TiSiN纳米复合涂层,为SiH4用于工业化TiSiN涂层生产提供依据。方法采用电弧离子镀技术,在SiH4气氛下,于单晶硅和硬质合金衬底上制备Si掺杂的TiSiN纳米复合涂层,研究SiH4流量对TiSiN涂层化学组分、微观结构、硬度和耐磨性能的影响。结果 SiH4流量对TiSiN纳米复合涂层的微观结构、硬度及摩擦系数的影响明显。随着SiH4流量的增加,TiSiN涂层由柱状晶生长的晶体结构逐渐转变为纳米晶镶嵌于非晶基体的复合结构。 Si在涂层中以Si3 N4非晶相存在,随着涂层中Si含量逐渐增加,TiN晶粒尺寸逐渐减小,Si3 N4起到细化晶粒的作用。在42 mL/min的SiH4流量下,涂层硬度高达4100HV0.025。在对磨材料为硬质合金的条件下,TiSiN涂层摩擦系数小于0.6。结论 SiH4气氛下可以制备出TiN纳米晶镶嵌于Si3N4非晶相结构的TiSiN纳米复合涂层,涂层的显微硬度较高。 SiH4可以作为Si源用于TiSiN纳米复合涂层的工业化生产。","authors":[{"authorName":"田灿鑫","id":"6f604726-2e5e-4110-b36b-07e3366fe27c","originalAuthorName":"田灿鑫"},{"authorName":"周小东","id":"bc1c466b-b400-43aa-8a6b-da68576efb34","originalAuthorName":"周小东"},{"authorName":"周思华","id":"55af5770-6175-4e12-b821-7ede4b8e18c6","originalAuthorName":"周思华"},{"authorName":"杨兵","id":"cab2efb8-a3cd-4810-b010-11acede6425a","originalAuthorName":"杨兵"},{"authorName":"付德君","id":"8165dbe5-3acb-4dd5-ab64-a7c94af001af","originalAuthorName":"付德君"}],"doi":"10.16490/j.cnki.issn.1001-3660.2015.08.003","fpage":"15","id":"f5422de9-19d2-4b35-a01e-2d2565ebac71","issue":"8","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"08092109-5662-4833-874f-b783f9d7d97a","keyword":"电弧离子镀","originalKeyword":"电弧离子镀"},{"id":"656f66c5-60a6-448e-b2ce-3f35ef2a3c79","keyword":"TiSiN纳米复合涂层","originalKeyword":"TiSiN纳米复合涂层"},{"id":"c136d29a-f68c-40b1-a2c7-8204502ce966","keyword":"SiH4 流量","originalKeyword":"SiH4 流量"},{"id":"c76b70f6-afef-4278-b382-66d59348daf2","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"fe05dc1b-07ef-45fb-80b6-a7e92895a21c","keyword":"硬度","originalKeyword":"硬度"},{"id":"e8f46198-4834-4e1e-88c1-b4ccb72436e2","keyword":"摩擦系数","originalKeyword":"摩擦系数"}],"language":"zh","publisherId":"bmjs201508003","title":"电弧离子镀制备TiSiN纳米复合涂层","volume":"","year":"2015"},{"abstractinfo":"研究了用PCVD法所制备的TiN,TiAlN和TiSiN硬质涂层的抗高温氧化性能及TiN涂层在双氧水介质中的抗氧化性能.结果表明,TiAlN,TiSiN涂层在空气中的抗高温氧化温度达700 ℃以上,TiN涂层可达600 ℃.在双氧水介质中,PCVD-TiN涂层仍具有较强的抗氧化能力,且优于PVD-TiN涂层.","authors":[{"authorName":"彭红瑞","id":"24a63dd5-d77c-411d-8a7e-5727c5902a28","originalAuthorName":"彭红瑞"},{"authorName":"石玉龙","id":"ad8639e6-3e52-4a40-adad-ba41e227b049","originalAuthorName":"石玉龙"},{"authorName":"谢雁","id":"26c22371-fc55-4bcf-a384-635c80b0e63e","originalAuthorName":"谢雁"},{"authorName":"赵程","id":"887b63ee-800a-46a7-a94e-b3578089ddff","originalAuthorName":"赵程"}],"doi":"10.3969/j.issn.1001-1560.1999.01.020","fpage":"34","id":"07a64a7a-be5e-4be4-947a-dc3d76e84713","issue":"1","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"93ba4089-572e-440c-8d83-d94c74c63503","keyword":"涂层","originalKeyword":"涂层"},{"id":"b08cb110-c17c-403a-a708-b68665e129e7","keyword":"抗氧化性能","originalKeyword":"抗氧化性能"},{"id":"1128714e-2da2-4ede-827f-56a975d59776","keyword":"等离子体化学气相沉积","originalKeyword":"等离子体化学气相沉积"},{"id":"fd5ec00d-49ff-4221-9b4e-53d714df005d","keyword":"TiN","originalKeyword":"TiN"},{"id":"f3c9cbfd-fb73-45b3-936d-d0be2f446400","keyword":"TiAlN","originalKeyword":"TiAlN"},{"id":"65b0ec8c-9da3-4487-914a-8d825ba1ee16","keyword":"TiSiN","originalKeyword":"TiSiN"}],"language":"zh","publisherId":"clbh199901020","title":"PCVD-TiN,TiAlN及TiSiN涂层的抗高温氧化性能","volume":"32","year":"1999"},{"abstractinfo":"采用物理气相沉积(Physical vapor deposition, PVD)工艺在Al2O3/TiCN陶瓷刀具表面分别沉积了TiN和TiSiN 涂层。通过扫描电子显微镜(SEM)观察涂层微观结构,采用显微硬度计和划痕仪分别表征涂层硬度和测量涂层与基体的结合强度。通过对涂层刀具进行连续干切削灰铸铁实验,研究 TiN 和 TiSiN 涂层对刀具磨损特征的影响并探讨其磨损机理,同时研究了涂层对工件加工表面质量的影响。结果表明: PVD涂层可显著提高Al2O3/TiCN陶瓷的刀具硬度。TiN涂层和TiSiN涂层可分别提高刀具表面硬度25%和65%,从而增加刀具耐磨性。两种涂层刀具在连续切削灰铸铁实验中主要的失效机理均是挤压变形下的磨粒磨损,其中 TiN 涂层刀具还伴随有粘结磨损;刀具上的PVD-TiN和TiSiN涂层可以有效保护Al2O3/TiCN陶瓷刀具基体,防止崩刃,进而改善工件表面加工质量。","authors":[{"authorName":"曾俊杰","id":"59c36d62-942a-40fc-bd95-30eaa40e9178","originalAuthorName":"曾俊杰"},{"authorName":"刘伟","id":"0bb8bede-d599-4233-a9f0-1c07e8919207","originalAuthorName":"刘伟"},{"authorName":"龙莹","id":"7ece330b-251d-488f-8c43-5a919993e25f","originalAuthorName":"龙莹"},{"authorName":"古尚贤","id":"ddad2c38-baa8-4722-9ef5-912349624ea5","originalAuthorName":"古尚贤"},{"authorName":"李安琼","id":"1a1a1236-8d1b-4f65-b27b-66d1afc52854","originalAuthorName":"李安琼"},{"authorName":"伍尚华","id":"b0b1baeb-6d7a-4b25-a639-8e9da7d764d6","originalAuthorName":"伍尚华"}],"doi":"10.15541/jim20150106","fpage":"1089","id":"01e2c98a-233b-4cc2-a8b2-296e7f5cb186","issue":"10","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"3167df4f-8334-414c-ad8a-bc33c2618dce","keyword":"连续切削","originalKeyword":"连续切削"},{"id":"f273de1e-4b36-4c0a-9bb0-41d1e04e4282","keyword":"切削性能","originalKeyword":"切削性能"},{"id":"2006d410-5abb-4414-a5a5-3f497e306f00","keyword":"涂层刀具","originalKeyword":"涂层刀具"}],"language":"zh","publisherId":"wjclxb201510015","title":"基于PVD-TiN和TiSiN涂层的Al2O3/TiCN陶瓷刀具及其切削性能研究","volume":"","year":"2015"},{"abstractinfo":"采用TiSi复合靶和 Al 靶,用射频磁控溅射工艺沉积不同 TiSiN 层厚度的 AlN/TiSiN 纳米多层膜.采用 X 射线衍射仪(XRD )、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)和纳米压痕仪研究了不同 TiSiN 层厚度对 AlN/TiSiN 纳米多层膜的微观组织和力学性能的影响.结果表明,随着TiSiN层厚度的增加,AlN 相的结晶程度先增加后降低,涂层的硬度先提高后降低,当 TiSiN 层厚度为0.5 nm时具有最高的硬度和弹性模量.HRTEM观测可知,在TiSiN层厚度为0.5 nm 时,TiSiN 层在 AlN层的模板作用下呈密排六方结构,并与 AlN 层呈共格外延生长,薄膜的强化主要与共格外延生长结构有关.","authors":[{"authorName":"陈朋灿","id":"67aedccf-2dca-408a-b011-caa259f1a771","originalAuthorName":"陈朋灿"},{"authorName":"李伟","id":"7470b922-4f1e-4b22-9340-626a9d15a73c","originalAuthorName":"李伟"},{"authorName":"卢建富","id":"f89503ce-1486-483e-8fc1-279272e2b3ef","originalAuthorName":"卢建富"},{"authorName":"刘平","id":"776d675d-3aa5-4593-8d3e-bf9347636acf","originalAuthorName":"刘平"},{"authorName":"张柯","id":"c46c7a2a-264e-4503-b3a5-7de2bbf429d3","originalAuthorName":"张柯"},{"authorName":"马凤仓","id":"c6ad5e4b-bb10-4246-94d3-db39dea87944","originalAuthorName":"马凤仓"},{"authorName":"刘新宽","id":"725cd62d-c042-4b31-96af-88b552b3caf6","originalAuthorName":"刘新宽"},{"authorName":"陈小红","id":"326317ea-c823-4aa9-a0ae-dc7343ae07a4","originalAuthorName":"陈小红"},{"authorName":"何代华","id":"722e6396-ae29-4f4d-a08e-74058274fe78","originalAuthorName":"何代华"}],"doi":"10.3969/j.issn.1001-9731.2015.11.017","fpage":"11080","id":"f8c5c2c6-7d63-49f4-b97a-26d658fe3c1e","issue":"11","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"8fd0a134-427a-40c7-8d9a-d208e3ffd09e","keyword":"AlN/TiSiN 纳米多层膜","originalKeyword":"AlN/TiSiN 纳米多层膜"},{"id":"31f13b5b-b9cc-4aec-b4c2-6ce2d89e4d79","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"75110f3a-ba71-4e49-a438-010153ca4131","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"d7bb52fe-00a2-4ce1-a122-b8eef15adfc3","keyword":"共格外延生长","originalKeyword":"共格外延生长"}],"language":"zh","publisherId":"gncl201511017","title":"AlN/TiSiN纳米多层膜的微观组织和力学性能研究?","volume":"","year":"2015"},{"abstractinfo":"采用不同Si含量的TiSi复合靶和Cr靶,用射频磁控溅射工艺在Si基底片上沉积不同Si含量的CrN/TiSiN纳米多层膜.采用X射线衍射仪(XRD)、高分辨透射电子显微镜(HRTEM)和纳米压痕仪研究Si含量对CrN/TiSiN纳米多层膜显微结构和力学性能的影响.结果表明:随着Si含量的增加,CrN相的结晶程度先增加后降低,涂层的力学性能先提高后降低,当n(Si)∶n(Ti)=7∶18时获得最高硬度为31.5GPa.HRTEM观测表明,在n(Si)∶n(Ti)=7∶18时,TiSiN层在CrN层的模板作用下呈面心立方结构,并且与CrN层形成共格外延生长结构;当n(Si)∶n(Ti)=11∶14时,TiSiN层总体呈非晶结构,与CrN层的共格外生长结构被破坏.硬度的升高主要与TiSiN与CrN形成共格外延生长结构有关.","authors":[{"authorName":"王建鹏","id":"3aee6b10-c8f5-4013-ae9d-d4ab8618f0b4","originalAuthorName":"王建鹏"},{"authorName":"李伟","id":"942ccd9c-0343-417d-ad8d-0ff489d923ca","originalAuthorName":"李伟"},{"authorName":"刘平","id":"54d546a1-b954-4408-937f-58c8e6a68df9","originalAuthorName":"刘平"},{"authorName":"马凤仓","id":"3b645105-805a-4218-b41d-22496f8700dc","originalAuthorName":"马凤仓"},{"authorName":"刘新宽","id":"eb4f88bf-7957-4c43-9f32-173c74591d45","originalAuthorName":"刘新宽"},{"authorName":"陈小红","id":"51c6961f-b343-452b-95dd-44151d828ce0","originalAuthorName":"陈小红"},{"authorName":"何代华","id":"69800e91-ffcf-4d36-8d7f-21c4dd51479e","originalAuthorName":"何代华"}],"doi":"","fpage":"739","id":"57262944-6ca7-4826-9f37-f97510d773e8","issue":"3","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"968046a3-9069-45a5-a8a1-8acb6245bd56","keyword":"CrN/TiSiN纳米多层膜","originalKeyword":"CrN/TiSiN纳米多层膜"},{"id":"dcdac8cb-0c2a-4679-accb-4ccd07744d9c","keyword":"Si含量","originalKeyword":"Si含量"},{"id":"029b61bf-9a01-4db7-9a3b-193ab521e6d4","keyword":"显微结构","originalKeyword":"显微结构"},{"id":"716c3603-7463-467a-b25b-18ad45f00540","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"970f0c46-a8d3-4399-b4a5-9b273408e9a7","keyword":"外延生长","originalKeyword":"外延生长"}],"language":"zh","publisherId":"zgysjsxb201403021","title":"Si含量对CrN/TiSiN纳米多层膜显微结构和力学性能的影响","volume":"24","year":"2014"},{"abstractinfo":"采用反应磁控溅射的方法,利用Zr靶与Ti-Si复合靶成功制备了不同TiSiN层厚度的ZrN/Ti-SiN纳米多层膜.利用X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、扫描电子显微镜(SEM)和纳米压痕仪研究了不同TiSiN层厚度对ZrN/TiSiN纳米多层膜的微观结构和力学性能的影响.结果表明,ZrN/TiSiN纳米多层膜主要由面心立方的ZrN相组成,随着TiSiN层厚度的增加,纳米多层膜的结晶程度先增加后降低,其硬度和弹性模量也先升高后降低.当TiSiN层厚度为0.7 nm时,纳米多层膜具有最高的硬度和弹性模量,分别为28.7和301.1 GPa,远超过ZrN单层膜.ZrN/TiSiN纳米多层膜的强化效果可由交变应力场和模量差理论进行解释.","authors":[{"authorName":"郑伟","id":"d0c05396-f940-4963-909f-1c841206d505","originalAuthorName":"郑伟"},{"authorName":"李伟","id":"cd7866b0-1715-4dd4-b143-02ecf499116a","originalAuthorName":"李伟"},{"authorName":"孟佳","id":"b2b54ab4-5e6f-46cb-938b-dbb48dbe31df","originalAuthorName":"孟佳"},{"authorName":"刘平","id":"98e668bb-aaba-4f25-b8f0-148a25d5f674","originalAuthorName":"刘平"},{"authorName":"马凤仓","id":"acc03077-7987-42b8-8448-9d4607882e3a","originalAuthorName":"马凤仓"},{"authorName":"刘新宽","id":"e141e8f4-a985-4cae-a77b-ea4c9cc31005","originalAuthorName":"刘新宽"},{"authorName":"陈小红","id":"0fff0f12-4f4b-4131-a2a2-1a359052dca3","originalAuthorName":"陈小红"},{"authorName":"何代华","id":"7ddcb353-33bf-45a2-b828-46c4dd607ba8","originalAuthorName":"何代华"}],"doi":"10.3969/j.issn.1001-9731.2016.01.008","fpage":"1038","id":"cac07485-82dc-4fcb-bfcf-2751948fa8b3","issue":"1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"1f194241-a85d-41dd-97d3-25f7a7ede1e5","keyword":"ZrN/TiSiN纳米多层膜","originalKeyword":"ZrN/TiSiN纳米多层膜"},{"id":"c6e8a70c-d737-4ad9-bf93-a708040fdb49","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"147bae10-de23-4d11-aa91-fc9be8fce675","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"4f9a2561-29ea-4a9e-b686-d4836caebc52","keyword":"共格外延生长","originalKeyword":"共格外延生长"}],"language":"zh","publisherId":"gncl201601008","title":"ZrN/TiSiN纳米多层膜的微观结构和力学性能研究","volume":"47","year":"2016"},{"abstractinfo":"为实现电弧离子镀TiSiN薄膜成分可控,通过改变靶的相对电流在304不锈钢表面沉积TiSiN薄膜,采用厚度仪、能谱仪、扫描电镜、X射线衍射仪及摩擦试验研究了其形貌、结构及摩擦性能.结果表明:TiSiN薄膜中Si以非晶态Si3 N4形式存在,抑制了面心立方结构的TiN晶粒生长,形成纳米晶TiN/非晶Si3N4(nc-TiN/α-Si3N4)纳米复合结构;与TiN薄膜相比,TiSiN薄膜具有更平整的表面,Si含量为4.08%(原子分数)时薄膜表面最光滑平整;TiN薄膜的硬度为2 312 HK左右,掺杂Si元素后,由于细晶强化作用,薄膜的硬度显著提高,Si含量为2.76%(原子分数)时达到最大值,约为3 315 HK;进一步增加Si含量,TiSiN薄膜硬度略有下降;TiSiN薄膜的摩擦系数明显低于TiN薄膜,且随着Si含量增加,摩擦系数逐渐变小,在Si含量为2.76%和4.08%(原子分数)时低至0.4左右.","authors":[{"authorName":"谢婷婷","id":"04c4e620-ce2d-4cf8-a592-953ce4f8b0c1","originalAuthorName":"谢婷婷"},{"authorName":"王向红","id":"595226cc-5a2c-41c4-95a4-aa856237499f","originalAuthorName":"王向红"},{"authorName":"吴百中","id":"9c448968-bf28-4a32-87d4-a62494579f27","originalAuthorName":"吴百中"},{"authorName":"高斌","id":"40824b9c-5657-4b00-a3a4-52d40323ac34","originalAuthorName":"高斌"},{"authorName":"郎文昌","id":"b9244620-29dc-4cbe-85ae-20f9c63d6ebb","originalAuthorName":"郎文昌"}],"doi":"","fpage":"51","id":"42bac85e-08cc-4478-8305-aaea87d70cd5","issue":"2","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"c40fb8c7-dc8f-4ee5-bd0e-817ae4d7e451","keyword":"TiSiN薄膜","originalKeyword":"TiSiN薄膜"},{"id":"c029b022-e4d8-4cfe-9d6f-8bfeadeecddc","keyword":"电弧离子镀","originalKeyword":"电弧离子镀"},{"id":"fa144d99-fea2-4792-881c-900526ba9995","keyword":"结构","originalKeyword":"结构"},{"id":"4a544522-85a1-4668-ac87-591f4e03795b","keyword":"硬度","originalKeyword":"硬度"},{"id":"ff41848f-4138-4be9-89d0-b00debc908d7","keyword":"摩擦系数","originalKeyword":"摩擦系数"}],"language":"zh","publisherId":"clbh201502015","title":"电弧离子镀TiSiN薄膜的结构及摩擦性能","volume":"48","year":"2015"},{"abstractinfo":"采用TiSi复合靶与V靶,用射频磁控溅射工艺在TiSiN纳米复合膜中插入不同厚度的VN纳米层,采用X射线衍射仪(XRD)、高分辨透射电子显微镜(HRTEM)和纳米压痕仪研究了VN插入层厚度对TiSiN纳米复合膜的微观结构和力学性能的影响.结果表明:当TiSiN纳米复合膜中插入VN纳米层厚度较小时,薄膜由纳米复合结构转变成纳米多层结构,薄膜硬度降低.继续增加VN层厚度,薄膜硬度随之升高,在VN沉积层厚为0.5 nm时薄膜出现连续贯穿多层纳米层、结晶度良好的柱状晶,TiSiN层与VN层呈共格外延生长的结构,薄膜硬度达到37.2 GPa.随着VN层厚的继续增加,薄膜的共格外延生长结构消失,硬度下降.","authors":[{"authorName":"薛增辉","id":"0e19661b-e99f-45cd-9da9-5266bb98e061","originalAuthorName":"薛增辉"},{"authorName":"李伟","id":"da50bb75-5625-4194-9cf8-edcd1a322642","originalAuthorName":"李伟"},{"authorName":"刘平","id":"e5b7b427-9b22-41fd-b1dd-baf9bd309991","originalAuthorName":"刘平"},{"authorName":"马凤仓","id":"0f8612bf-8dff-4659-bcc1-1315c335b62a","originalAuthorName":"马凤仓"},{"authorName":"刘新宽","id":"09854cc8-2457-4cb6-9295-0c0f0fb17999","originalAuthorName":"刘新宽"},{"authorName":"陈小红","id":"81919935-4734-49c1-8c7f-a5a4cf6feec4","originalAuthorName":"陈小红"},{"authorName":"何代华","id":"02212918-1611-48c2-8b8b-44ee9dde0aaf","originalAuthorName":"何代华"}],"doi":"10.15541/jim20140022","fpage":"1082","id":"5969176b-d0f1-47f7-a5c1-a0627b767eb3","issue":"10","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"79302e72-9989-44a6-9870-6bf004393b2e","keyword":"TiSiN纳米复合膜","originalKeyword":"TiSiN纳米复合膜"},{"id":"478a7851-8a34-4af1-a6a6-d499047a6e2a","keyword":"VN插入层","originalKeyword":"VN插入层"},{"id":"f584d84a-6309-4bb2-ad90-e65dd6332e28","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"f953a700-da12-4936-ae76-39853fdef6c7","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"wjclxb201410014","title":"不同厚度二维VN插入层对TiSiN纳米复合膜微观结构和力学性能的影响","volume":"29","year":"2014"}],"totalpage":935,"totalrecord":9349}