无机材料学报, 2017, 32(1): 45-50.
10.15541/jim20160171
固相烧结SiC陶瓷的非线性电学行为研究

陈健 1, , 殷杰 2, , 朱云洲 3, , 杨勇 4, , 陈忠明 5, , 张景贤 6, , 刘学建 7, , 黄政仁 8,

1.中国科学院上海硅酸盐研究所,结构陶瓷工程研究中心,上海200050;
2.中国科学院上海硅酸盐研究所,结构陶瓷工程研究中心,上海200050;
3.中国科学院上海硅酸盐研究所,结构陶瓷工程研究中心,上海200050;
4.中国科学院上海硅酸盐研究所,结构陶瓷工程研究中心,上海200050;
5.中国科学院上海硅酸盐研究所,结构陶瓷工程研究中心,上海200050;
6.中国科学院上海硅酸盐研究所,结构陶瓷工程研究中心,上海200050;
7.中国科学院上海硅酸盐研究所,结构陶瓷工程研究中心,上海200050;
8.中国科学院上海硅酸盐研究所,结构陶瓷工程研究中心,上海200050

固相烧结SiC(SSiC)陶瓷大多数用于结构陶瓷材料,用于电子和电阻元器件的研究很少.实验以添加不同C含量的致密SSiC陶瓷材料为研究对象,研究了添加不同C含量SSiC陶瓷的伏安特性、电阻率与电流密度的变化关系及电阻率与温度的变化关系.研究结果表明:SSiC陶瓷表现出明显的非线性电学特性,其电阻率随着电流的增大而降低;对于添加3wt%C含量的SSiC陶瓷,当电场强度超过15.8 V/mm时,晶界势垒被击穿;对于添加6wt%C含量的SSiC陶瓷,当电场强度超过70.7 V/mm时,晶界势垒被击穿,它们的电阻率将为晶粒所控制,电阻率较小;同时在电场强度1 V/mm条件下,SSiC陶瓷电阻率随着温度的升高而降低,表现出很好热敏特性,从常温的106 Ω·cm变化为400℃的5 Ω·cm左右.
引用: 陈健, 殷杰, 朱云洲, 杨勇, 陈忠明, 张景贤, 刘学建, 黄政仁 固相烧结SiC陶瓷的非线性电学行为研究. 无机材料学报, 2017, 32(1): 45-50. doi: 10.15541/jim20160171
参考文献:
[1] Chen Jian;Huang Zhengren;Chen Zhongming.The effect of carbon on surface quality of solid-state-sintered silicon carbide as optical materials[J].Materials Characterization,2014:7-12.
[2] Jianqin Gao;Jian Chen;Guiling Liu;Yongjie Yan;Xuejian Liu;Zhengren Huang.Role of microstructure on surface and subsurface damage of sintered silicon carbide during grinding and polishing[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,20101/2(1/2):88-94.
[3] Yinsheng Li;Jie Yin;Haibo Wu.High thermal conductivity in pressureless densified SiC ceramics with ultra-low contents of additives derived from novel boron-carbon sources[J].Journal of the European Ceramic Society,201410(10):2591-2595.
[4] 王学梅.宽禁带碳化硅功率器件在电动汽车中的研究与应用[J].中国电机工程学报,2014(03):371-379.
[5] Z. Todorova;N. Dishovsky;R. Dimitrov.Natural Rubber Filled SiC and B4C Ceramic Composites as a New NTC Thermistors and Piezoresistive Sensor Materials[J].Polymer Composites,20081(1):109-118.
[6] 郭磊;宁叔帆;于开坤;李红岩;赵丽华;刘斌;陈寿田.碳化硅非线性导电特性的研究进展[J].绝缘材料,2005(3):60-64.
[7] Li, Yinsheng;Yin, Jie;Wu, Haibo;Deng, Hao;Chen, Jian;Yan, Yongjie;Liu, Xuejian;Huang, Zhengren;Jiang, Dongliang.Enhanced electrical resistivity in SiC-BN composites with highly-active BN nanoparticles synthesized via chemical route[J].Journal of the European Ceramic Society,20155(5):1647-1652.
[8] Li, Yinsheng;Yin, Jie;Wu, Haibo;Zhang, Jingxian;Chen, Jian;Yan, Yongjie;Liu, Xuejian;Huang, Zhengren;Jiang, Dongliang.Microstructure, Thermal Conductivity, and Electrical Properties of In Situ Pressureless Densified SiC-BN Composites[J].Journal of the American Ceramic Society,20153(3):879-887.
[9] Liang, Hanqin;Yao, Xiumin;Deng, Hao;Zhang, Hui;Liu, Xuejian;Huang, Zhengren.High electrical resistivity of spark plasma sintered SiC ceramics with Al2O3 and Er2O3 as sintering additives[J].Journal of the European Ceramic Society,20151(1):399-403.
[10] Yinsheng Li;Haibo Wu;Jie Yin.High electrical resistivity of pressureless sintered in situ SiC-BN composites[J].Scripta materialia,201310(10):740-743.
[11] P. R. Bueno;E. R. Leite;M. M. Oliveira;M. O. Orlandi;E. Longo.Role of oxygen at the grain boundary of metal oxide varistors: A potential barrier formation mechanism[J].Applied physics letters,20011(1):48-50.

相似文献: