钢铁研究学报, 2017, 29(1): 19-25.
10.13228/j.boyuan.issn1001-0963.20160047
不同结构粒化器表面高炉渣液膜的流动特性

吴君军 1, , 王宏 2, , 朱恂 3, , 廖强 4, , 丁玉栋 5,

1.重庆大学工程热物理研究所,重庆,400030;
2.重庆大学工程热物理研究所,重庆 400030; 重庆大学低品位能源利用技术及系统教育部重点实验室,重庆 400030;
3.重庆大学工程热物理研究所,重庆 400030; 重庆大学低品位能源利用技术及系统教育部重点实验室,重庆 400030;
4.重庆大学工程热物理研究所,重庆 400030; 重庆大学低品位能源利用技术及系统教育部重点实验室,重庆 400030;
5.重庆大学工程热物理研究所,重庆 400030; 重庆大学低品位能源利用技术及系统教育部重点实验室,重庆 400030

在高炉渣离心粒化热回收工艺中,粒化得到的颗粒尺寸对余热回收效果至关重要,而颗粒尺寸又与粒化器表面液膜的流动特性息息相关,因此增进对粒化器表面液膜流动特性的认识可为离心粒化技术提供指导.采用数值模拟方法研究了离心粒化过程中粒化器结构对液膜流动的影响;讨论了半径、倾角、深度等参数对粒化器表面液膜厚度的影响及其作用机理,并获取了流体在粒化器表面运动轨迹与液膜厚度的关系.结果表明:转杯粒化器的内倾角介于40°~60°之间或深度介于10~12 mm之间时粒化效果最佳,其相应液膜厚度约为0.300 mm.与等径的转盘粒化器相比,其液膜厚度减小约32%.粒化器结构对液膜厚度的影响可归因于粒化器表面流体运动轨迹长度的变化,当流体运动轨迹长度增大时,其对应的液膜厚度就越小,二者呈非线性负相关关系.
关键词: 高炉渣   离心粒化   粒化器   液膜   流动
引用: 吴君军, 王宏, 朱恂, 廖强, 丁玉栋 不同结构粒化器表面高炉渣液膜的流动特性. 钢铁研究学报, 2017, 29(1): 19-25. doi: 10.13228/j.boyuan.issn1001-0963.20160047
参考文献:
[1] 戴晓天;齐渊洪;张春霞;许海川;严定鎏;洪益成.高炉渣急冷干式粒化处理工艺分析[J].钢铁研究学报,2007(5):14-19.
[2] Toshio MIZUOCHI;Tomohiro AKIYAMA;Taihei SHIMADA.Feasibility of Rotary Cup Atomizer for Slag Granulation[J].ISIJ International,200112(12):1423-1428.
[3] Y. Pan;P. J. Witt;B. Kuan;D. Xie.CFD Modelling of the Effects of Operating Parameters on the Spreading of Liquids on a Spinning Disc[J].The Journal of Computational Multiphase Flows,20141(1):49-64.
[4] Wang, Dongxiang;Ling, Xiang;Peng, Hao.Simulation of ligament mode breakup of molten slag by spinning disk in the dry granulation process[J].Applied thermal engineering: Design, processes, equipment, economics,2015:437-447.
[5] 闫兆民;周扬民;杨志远;仪垂杰.高炉渣干式平盘粒化实验研究[J].冶金能源,2010(3):44-46.
[6] J. W. Xie;Y. Y. Zhao;J. J. Dunkley.Effects of processing conditions on powder particle size and morphology in centrifugal atomisation of tin[J].Powder Metallurgy,20042(2):168-172.
[7] Junxiang Liu;Qingbo Yu;Peng Li;Wenya Du.Cold experiments on ligament formation for blast furnace slag granulation[J].Applied thermal engineering: Design, processes, equipment, economics,2012:351-357.
[8] Toshio MIZUOCHI;Tomohiro AKIYAMA.Cold Experiments of Rotary Varied-disks and Wheels for Slag Atomization[J].ISIJ International,20039(9):1469-1471.
[9] 杨海威;詹永麒;郑炜.转盘结构参数对雾化效果的影响研究[J].机床与液压,2001(2):77-79.
[10] 杨海威;郑炜;王志新;臧春城.壁面环形延程槽对转盘雾化影响的研究[J].上海交通大学学报(农业科学版),2001(1):36-40.
[11] 杨银凯 .高炉渣干式离心粒化数值模拟研究[D].武汉科技大学,2013.
[12] Burns JR.;Ramshaw C.;Jachuck RJ..Measurement of liquid film thickness and the determination of spin-up radius on a rotating disc using an electrical resistance technique[J].Chemical Engineering Science,200311(11):2245-2253.
[13] Y.Y.Zhao.Liquid Flow on a Rotating Disk Prior to Centrifugal Atomization and Spray Deposition[J].Metallurgical and Materials Transactions, B. Process metallurgy and materials processing science,19986(6):1357-1368.
[14] Dongxiang Wang;Xiang Ling;Hao Peng.Theoretical analysis of free-surface film flow on the rotary granulating disk in waste heat recovery process of molten slag[J].Applied thermal engineering: Design, processes, equipment, economics,20141(1):387-395.

相似文献: