{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为适应微动隔振平台自适应控制的要求,提高系统响应速度和输出位移量,为隔振平台系统的执行元件一压电设计预压装置,建立压电模型,推出预压力与位移和迟滞的理论表达式.根据压电受压状态试验,发现压电的输出位移和迟滞量在受压下的变化与理论曲线基本吻合,在此基础上,进一步分析预压力对位移和迟滞量的影响机理.结果表明,位移量和迟滞的变化的根本原因是逆压电效应和压电系数随预压力的变化.","authors":[{"authorName":"陶帅","id":"247db865-3e7d-4875-92c4-ea453263ce70","originalAuthorName":"陶帅"},{"authorName":"白鸿柏","id":"a2c68e75-177d-4de5-9c40-f3265a1ba73d","originalAuthorName":"白鸿柏"},{"authorName":"侯军芳","id":"13332015-3432-4e29-b91b-1f9aa02346e8","originalAuthorName":"侯军芳"},{"authorName":"郝刚","id":"fda711dd-22b3-4e92-90b6-6354092e99cc","originalAuthorName":"郝刚"}],"doi":"10.3969/j.issn.1004-244X.2009.02.009","fpage":"29","id":"6efb38e2-719d-4480-b1dd-3e674e57f18c","issue":"2","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"8155d610-ea9b-4424-a474-545021b07628","keyword":"微隔振平台","originalKeyword":"微隔振平台"},{"id":"a7359040-34c7-497a-90c2-fa67812a8615","keyword":"压电","originalKeyword":"压电致动器"},{"id":"2ebe15cf-d8c5-4787-8631-967cb01874c1","keyword":"迟滞","originalKeyword":"迟滞"},{"id":"d5bbc97f-f4cf-4bca-8ac4-7637b59c5f70","keyword":"动态建模","originalKeyword":"动态建模"}],"language":"zh","publisherId":"bqclkxygc200902009","title":"预压力对压电位移和迟滞影响的分析","volume":"32","year":"2009"},{"abstractinfo":"为实现微隔振平台的自适应控制,选择具有驱动和传感功能的压电陶瓷材料,在对单片压电陶瓷进行分析的基础上建立压电堆动态模型.设计了一种驱动.该不仅具有驱动与传感功能,而且具有简单、易加工等特点.通过试验研究.对压电的预压进行标定,并选择合适的预压弹簧,完成对的成品化.结果表明:该压电的位移量大、重复性好.适用于微隔振平台的控制.","authors":[{"authorName":"陶帅","id":"65b37046-b3ab-4e13-a138-bcc2a68ad8df","originalAuthorName":"陶帅"},{"authorName":"白鸿柏","id":"f6f55fa9-d1ce-4d0a-a8f9-09b39222678a","originalAuthorName":"白鸿柏"},{"authorName":"侯军芳","id":"3baf19a4-2c15-4dc2-9e64-6018d76419a2","originalAuthorName":"侯军芳"},{"authorName":"李中伟","id":"aedb007d-4138-4fa2-a511-5136b98c58a1","originalAuthorName":"李中伟"}],"doi":"10.3969/j.issn.1004-244X.2008.05.014","fpage":"47","id":"a5234237-a1b1-453a-8d84-e1d8a42f2b92","issue":"5","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"f4491519-46f3-451d-9a53-acb79f13bafb","keyword":"微隔振平台","originalKeyword":"微隔振平台"},{"id":"072f5e47-10b9-4232-9e2b-7dcdcc2ee6e0","keyword":"自适应控制","originalKeyword":"自适应控制"},{"id":"acbd80fd-7754-46be-a985-f6594d79e059","keyword":"压电陶瓷","originalKeyword":"压电陶瓷"},{"id":"c5987157-e800-47da-8114-f89202b92f00","keyword":"","originalKeyword":"致动器"},{"id":"53be98c5-fea9-4471-8611-7aabb44b2b27","keyword":"动态建模","originalKeyword":"动态建模"}],"language":"zh","publisherId":"bqclkxygc200805014","title":"微隔振平台的压电设计","volume":"31","year":"2008"},{"abstractinfo":"超磁伸缩材料具有很强的非线性耦合特性、磁滞特性和复杂动态特性.因此,建立能够准确描述超磁伸缩工作状态的模型成为关键问题.综述棒型超磁伸缩材料在多场耦合特性、磁滞特性建模研究状况以及超磁伸缩动力学建模研究状况,分析当前所建立多种模型的优缺点,并展望建模工作的发展趋势.","authors":[{"authorName":"崔旭","id":"c0c3dd80-1acf-4c90-9ce8-003cbc37d09e","originalAuthorName":"崔旭"},{"authorName":"何忠波","id":"a1b8cf8a-68e5-4a61-9484-2a3b29991cc9","originalAuthorName":"何忠波"},{"authorName":"李冬伟","id":"95b3bc99-3c87-490b-8d13-68cf49d35542","originalAuthorName":"李冬伟"},{"authorName":"李玉龙","id":"0e05062c-2737-4244-8830-ec59e76cbdad","originalAuthorName":"李玉龙"}],"doi":"33-1331/TJ.20110703.2110.001","fpage":"90","id":"98dac58b-5f64-49f6-8d54-07656ab7b160","issue":"4","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"373a852a-3a45-4605-a1ef-3eddce214ef9","keyword":"超磁伸缩材料","originalKeyword":"超磁致伸缩材料"},{"id":"b1e9f5c9-fda7-4b45-971e-c9e872b5329a","keyword":"","originalKeyword":"致动器"},{"id":"11ef9ce8-3c80-4683-be30-a1f68d8b1a65","keyword":"建模","originalKeyword":"建模"}],"language":"zh","publisherId":"bqclkxygc201104025","title":"超磁伸缩建模研究综述","volume":"00","year":"2011"},{"abstractinfo":"用提拉法磁悬浮冷坩埚技术生长的RFe2(Tb03Dy0.7Fe195)单晶材料,其室温下的饱和磁伸缩系数λs可达2 ×10-3以上,优于同成分的定向结晶材料.采用自制的高性能RFe2单晶材料,通过优化微位移的机械、磁路参数,研制出具有非水冷结构的新型微位移.","authors":[{"authorName":"王昌","id":"accf8c75-6ff0-441d-a8e6-a17eeb71349b","originalAuthorName":"王昌"},{"authorName":"李强","id":"9914f16d-e79d-4b19-b470-91c0df6d78fc","originalAuthorName":"李强"},{"authorName":"李银祥","id":"4cd822f6-d634-4f29-a4b0-551f3461d892","originalAuthorName":"李银祥"},{"authorName":"张一玲","id":"f9fb4056-d4c4-40f4-9bbb-aa918cd90f9c","originalAuthorName":"张一玲"},{"authorName":"胡明哲","id":"b167e3d4-77c1-4670-9874-7e8ea10d002b","originalAuthorName":"胡明哲"}],"doi":"10.3969/j.issn.1000-3738.2003.01.010","fpage":"35","id":"1fa22019-405b-473c-8fb7-1758a93893f0","issue":"1","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"bb36b7be-d7b9-4fe0-90f1-9f41a8b73e92","keyword":"磁伸缩","originalKeyword":"磁致伸缩"},{"id":"f7cd2c67-bf26-4f58-890e-d0b2342c7d93","keyword":"Tb-Dy-Fe","originalKeyword":"Tb-Dy-Fe"},{"id":"79775640-0b4e-459d-802a-14bacea57776","keyword":"微位移","originalKeyword":"微位移致动器"}],"language":"zh","publisherId":"jxgccl200301010","title":"新型微位移的研究","volume":"27","year":"2003"},{"abstractinfo":"研究了超磁伸缩微位移的非线性动力学特性,以应用于精密机械加工的微进给系统的稀土超磁伸缩微位移设计及实验数据为基础,分析了碟簧非线性刚度对微位移动力学特性的影响.","authors":[{"authorName":"孟凡兴","id":"65fdd564-fc33-4edb-a191-472c49819524","originalAuthorName":"孟凡兴"},{"authorName":"袁惠群","id":"df758151-3b33-4d50-ab99-c2430d58118d","originalAuthorName":"袁惠群"},{"authorName":"周烁","id":"bccc3831-0e84-42d6-9758-656b68b603e0","originalAuthorName":"周烁"}],"doi":"10.3969/j.issn.1671-6620.2002.01.008","fpage":"41","id":"e932cb39-1fa9-4118-b8d6-8478897fe0ab","issue":"1","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"9a2a6684-393f-4345-aff0-2702db4f6c3d","keyword":"超磁伸缩材料","originalKeyword":"超磁致伸缩材料"},{"id":"8de423ba-9ef1-44cb-9f15-56e73a9d44b7","keyword":"微位移","originalKeyword":"微位移致动器"},{"id":"35374a2a-24a3-4303-bd7f-30a5ede2b702","keyword":"非线性动力学","originalKeyword":"非线性动力学"}],"language":"zh","publisherId":"clyyjxb200201008","title":"稀土超磁伸缩材料的动力学特性分析","volume":"1","year":"2002"},{"abstractinfo":"采用高性能Tb0.3Dy0.7Fe2单晶材料,通过优化微位移的机械、磁路参数,研制出了具有非水冷结构的新型微位移.的最大线性工作区间为0.5~35.5μm,工作电压为2~24V,饱和驱动量可达39.5μm.","authors":[{"authorName":"王昌","id":"5c683f97-26dc-4a98-a8d5-81f8166845e6","originalAuthorName":"王昌"},{"authorName":"李强","id":"dd7670f2-4b91-428a-b391-6653a4b18c3f","originalAuthorName":"李强"},{"authorName":"李银祥","id":"113434f6-afe2-41c5-81e3-a67c0e5a042b","originalAuthorName":"李银祥"},{"authorName":"张一玲","id":"6f4664ec-610f-4767-9f0c-d281b1e532d3","originalAuthorName":"张一玲"},{"authorName":"胡明哲","id":"e068a240-a5cc-4368-a551-5f231af000bb","originalAuthorName":"胡明哲"}],"doi":"10.3969/j.issn.1003-1545.2002.03.005","fpage":"19","id":"0af757bb-fc39-498d-81f3-3d0159029758","issue":"3","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"9a8cb690-296c-4285-bcc7-606330308640","keyword":"超磁伸缩","originalKeyword":"超磁致伸缩"},{"id":"dce85697-edf8-44a7-91d9-977473a333e5","keyword":"Tb0.3Dy0.7Fe2","originalKeyword":"Tb0.3Dy0.7Fe2"},{"id":"03a51f62-873f-47a9-8d02-d25813f2d211","keyword":"微位移","originalKeyword":"微位移致动器"}],"language":"zh","publisherId":"clkfyyy200203005","title":"超磁伸缩单晶微位移特性研究","volume":"17","year":"2002"},{"abstractinfo":"本文研究了以介电常数ε呈梯度变化时铅镁铌铁电陶瓷(ε-FGPMN)的电失效力学机理,通过梯度参数的优化设计,有效地降低了材料开裂的能量释放率,使得多层共烧铁电的临界层厚度有明显的减小,满足微电子元件微型化发展需要.","authors":[{"authorName":"梁军","id":"975030cc-09f9-4f9c-8384-f2c24eb5c8a6","originalAuthorName":"梁军"},{"authorName":"石志飞","id":"12c7b10d-5c4c-4fff-a0f5-d672f449bc12","originalAuthorName":"石志飞"},{"authorName":"杜善义","id":"bc2a6b27-de94-4789-9199-d90256c8f3d6","originalAuthorName":"杜善义"}],"doi":"10.3969/j.issn.1673-2812.2000.z2.049","fpage":"743","id":"c4802421-1bd4-454a-8e82-e0477bd17695","issue":"z2","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"16ee07b2-85ae-4b67-92ab-907e2b3fcff9","keyword":"梯度功能铁电材料","originalKeyword":"梯度功能铁电材料"},{"id":"aeb8e642-6a80-49d6-9bbf-76a050e17abf","keyword":"有效电弹性能","originalKeyword":"有效电弹性能"},{"id":"ef37aa6f-c6bd-4d48-8aeb-3009a09ffa4d","keyword":"电失效","originalKeyword":"电致失效"}],"language":"zh","publisherId":"clkxygc2000z2049","title":"梯度功能铁电陶瓷的电失效研究","volume":"18","year":"2000"},{"abstractinfo":"本文研究了微位移中磁能到机械能的转换效率K.计算方法实分别计算其受压状态下的总磁能以及由磁弹耦合作用产生的机械能.通过计算发现Terfeno1-D在其线形工作区间具有85% 左右的转换效率,实压电材料的2~3倍,是一种极具前途的磁伸缩材料.","authors":[{"authorName":"胡明哲","id":"f0172e8b-464d-42c0-9173-5c765aefeee5","originalAuthorName":"胡明哲"},{"authorName":"李强","id":"a75f22ec-8a9e-4d3c-88d6-fc015fc3ab71","originalAuthorName":"李强"},{"authorName":"张一玲","id":"ae75149f-fbed-4bef-9515-09f037a4c050","originalAuthorName":"张一玲"},{"authorName":"严清峰","id":"b48787ca-923e-46d5-8db4-16d09fd00eed","originalAuthorName":"严清峰"}],"doi":"10.3969/j.issn.1673-2812.2000.z2.041","fpage":"706","id":"46837f0f-75c6-4e39-840f-83dcb1c2d1c0","issue":"z2","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"df2d3e01-1c23-48a5-a859-27fcef9a880c","keyword":"微位移","originalKeyword":"微位移致动器"},{"id":"3de2ca49-7945-410d-adbb-346882e01f1f","keyword":"磁弹耦合","originalKeyword":"磁弹耦合"},{"id":"758fe8c8-922c-471f-9f4a-562c4f204921","keyword":"线形工作区间","originalKeyword":"线形工作区间"},{"id":"68e12578-46dc-4ae7-853d-8a858e6e03a3","keyword":"磁伸缩","originalKeyword":"磁致伸缩"},{"id":"b51205f1-c486-4105-b92a-bbbe9b36edb1","keyword":"磁机转换效率","originalKeyword":"磁机转换效率"}],"language":"zh","publisherId":"clkxygc2000z2041","title":"微位移中磁一机械能转换效率的研究","volume":"18","year":"2000"},{"abstractinfo":"磁伸缩型微位移通常采用多晶或孪晶结构材料作为驱动单元,由于晶界和孪晶界对畴壁的移动具有阻碍作用, 其低场下的位移输出较小,调控精度受到较大影响.采用Tb-Dy-Fe单晶材料可以有效解决这一问题,本文介绍了采用这一单晶材料设计的新型高精度微位移以及的结构和数控电源.","authors":[{"authorName":"王昌","id":"1ec49f68-53ea-4d79-8f5b-3dd6cc3093da","originalAuthorName":"王昌"},{"authorName":"李强","id":"d4a7ec69-fb8a-41bd-aaef-7c1545eb680c","originalAuthorName":"李强"},{"authorName":"李银祥","id":"f36f6310-b962-481d-b78e-9d5a4dd47b8b","originalAuthorName":"李银祥"},{"authorName":"张一玲","id":"8e5e1bea-7386-4f3f-9509-ec8438a39b23","originalAuthorName":"张一玲"},{"authorName":"胡明哲","id":"f6383651-25b6-4d05-8af3-a665dd571a7f","originalAuthorName":"胡明哲"}],"doi":"10.3969/j.issn.1003-1545.2002.05.007","fpage":"23","id":"d1502d82-19b2-4d3c-a9ec-c6c6a7a03486","issue":"5","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"695e0f58-827a-4a8c-a5dd-181882c490e3","keyword":"Tb-Dy-Fe单晶","originalKeyword":"Tb-Dy-Fe单晶"},{"id":"16a4e211-8e83-4df5-8b1c-dfb584f9ad75","keyword":"磁伸缩","originalKeyword":"磁致伸缩致动器"},{"id":"271dd578-1f6a-41d5-ab16-eb916f804623","keyword":"微位移","originalKeyword":"微位移"}],"language":"zh","publisherId":"clkfyyy200205007","title":"新型纳米级微位移的设计","volume":"17","year":"2002"},{"abstractinfo":"为设计圆筒状超磁伸缩(GMA),采用基于磁路的方法对圆筒状超磁伸缩材料(GMM)内的磁场强度进行计算,基于Maxwell软件建立了圆筒状GMA的3D模型并对磁路结构中各部件尺寸及GMA筒内构件的磁导率对磁场的影响进行了仿真研究.结果表明:在闭合的磁路结构中,对于给定的线圈匝数和激励电流,GMM筒中磁场强度大小受GMM筒轴向长度影响较大且为负相关.磁场均匀性方面,影响较大的是穿过圆筒状GMA构件的磁导率和导磁环轴向长度,二者均与磁场不均匀度正相关.","authors":[{"authorName":"范文涛","id":"e9b2f600-ad83-4a95-8f07-536c82e1e0b9","originalAuthorName":"范文涛"},{"authorName":"林明星","id":"b58d8bb1-5cf0-49ba-898b-0ae6bd902620","originalAuthorName":"林明星"},{"authorName":"鞠晓君","id":"5f9b11eb-c1cb-4f38-9472-fe45c7286058","originalAuthorName":"鞠晓君"},{"authorName":"王庆东","id":"efa3fbbd-9f56-439d-a63a-0eddd01d2553","originalAuthorName":"王庆东"}],"doi":"10.3969/j.issn.1001-9731.2017.05.010","fpage":"5054","id":"aa082f2c-c70d-4df6-8f6c-a947ef46de11","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"6a04b16a-1305-43b0-9730-9552089edae9","keyword":"圆筒状超磁伸缩","originalKeyword":"圆筒状超磁致伸缩致动器"},{"id":"f7c03dc2-0a0d-48f8-aea7-7d26c96cbc5b","keyword":"磁路设计","originalKeyword":"磁路设计"},{"id":"4f95da5e-3086-4e02-bc35-549767f2a1fd","keyword":"磁场","originalKeyword":"磁场"},{"id":"6f36a843-72f0-4d6b-9811-555586c0daf6","keyword":"仿真","originalKeyword":"仿真"}],"language":"zh","publisherId":"gncl201705010","title":"圆筒状超磁伸缩磁场研究与仿真","volume":"48","year":"2017"}],"totalpage":1926,"totalrecord":19254}