{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"集流体是锂离子电池的重要组成部件之一,它不仅能承载电极活性物质,而且还可以将电极活性物质产生的电流汇集起来,形成较大的电流输出,提高锂离子电池充/放电效率.本文综述了当前文献中单一或复合集流体材料如铜、铝、镍、不锈钢、碳、覆碳铝箔等在锂离子电池中的最新研究进展.","authors":[{"authorName":"刘松","id":"44eb2224-ed5c-47cb-b6ea-7cfcb63c59e2","originalAuthorName":"刘松"},{"authorName":"侯宏英","id":"6d2a8628-aa04-40c2-b69d-6ff45497571f","originalAuthorName":"侯宏英"},{"authorName":"胡文","id":"2fbe6e6b-108d-499e-b1e7-f64832ec8a1f","originalAuthorName":"胡文"},{"authorName":"刘显茜","id":"508cdcd2-8ed3-47b8-98ed-8beba4fc3b1f","originalAuthorName":"刘显茜"},{"authorName":"段继祥","id":"de282912-b75d-4da0-b1d3-07f28c197051","originalAuthorName":"段继祥"},{"authorName":"孟瑞晋","id":"15424f5b-4b71-431a-9e5b-1112bc3a06c3","originalAuthorName":"孟瑞晋"}],"doi":"","fpage":"2562","id":"be774745-1f34-4e82-94d2-dcd88e3dac3c","issue":"9","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"ad72a370-34bc-4fee-8226-ea86177d087f","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"f274d966-b747-45f3-a2c9-7cec849fc443","keyword":"集流体","originalKeyword":"集流体"},{"id":"d7ff692b-9911-41e4-951b-c150ea76bcc0","keyword":"电流输出","originalKeyword":"电流输出"},{"id":"7f46f886-ed3e-4ae9-b763-6c7bc788f3ab","keyword":"能量效率","originalKeyword":"能量效率"}],"language":"zh","publisherId":"gsytb201509026","title":"锂离子电池集流体的研究进展","volume":"34","year":"2015"},{"abstractinfo":"采用碳纳米管(Carbon nanotubes,CNT)导电纸替代传统的金属铜箔作锂离子电池的负极集流体,石墨作为活性材料.在0.2C倍率条件下电池首次放电比容量高达815.7 mAh·g-1,可逆放电比容量为474.0 mAh·g-1,是铜箔作为负极集流体锂电池(236 mAh·g-1)的2倍,10次循环后电池容量保持率97.2%.CNT导电纸有良好的强度、韧性、吸液性能.相比铜箔集流体,其结构可有效保证负极材料与碳纳米管导电纸集流体间的紧密接触,减少界面电阻,增加电子传导通道.碳纳米管导电纸有望替代传统铜箔成为新一代锂离子电池用集流体.","authors":[{"authorName":"刘珍红","id":"239ed474-c10a-4a72-9759-71a0df921d11","originalAuthorName":"刘珍红"},{"authorName":"孙晓刚","id":"960b3903-6738-45a0-a80e-2f948b82441a","originalAuthorName":"孙晓刚"},{"authorName":"吴小勇","id":"b059ae88-bd65-45ce-b98b-bc6a560bc3bc","originalAuthorName":"吴小勇"},{"authorName":"庞志鹏","id":"eddc7331-192b-4e2f-8b93-5ee77042adc4","originalAuthorName":"庞志鹏"},{"authorName":"聂艳艳","id":"55235b92-f64c-40b7-8e16-0f58f42c9c5f","originalAuthorName":"聂艳艳"},{"authorName":"岳立福","id":"963cebbf-1ee7-4f8e-bd9f-50a075e209d4","originalAuthorName":"岳立福"}],"doi":"","fpage":"1778","id":"8be21608-43ae-4a3a-88ce-db90b7a31e6c","issue":"7","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"c6a6ea75-ccf6-4126-ad14-80549df01a0a","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"b10373a7-0ce1-4e47-a1f2-af1395a2099d","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"b9693d7b-c1b6-42b9-9d65-8e8ca3bf241c","keyword":"纸纤维","originalKeyword":"纸纤维"},{"id":"27a2870e-2442-4fbc-b404-9c59bbf06048","keyword":"集流体","originalKeyword":"集流体"}],"language":"zh","publisherId":"rgjtxb98201507012","title":"负极集流体为CNT导电纸的锂离子电池及其性能","volume":"44","year":"2015"},{"abstractinfo":"针对废旧锂离子电池回收工艺中电极集流体的分离问题,根据集流体、活性物质、粘结剂的物理化学性质差异,对高温焙烧法、物理擦洗法和稀酸浸出-搅拌擦洗法分离集流体与活性物质进行研究.结果表明:高温焙烧与物理擦洗法都不能完全使集流体分离出来,而通过稀酸溶解-搅拌擦洗联合作用分离效果良好,在硫酸浓度为0.5 mol/L、固液比1:10、搅拌速度200 r/min、反应时间为40 min的条件下,可以实现正负极活性物质与集流体的分离,铝箔和铜箔可直接作为产品回收,只有极少部分进入浸出液,浸出渣用硫酸再浸,可以使钴、锂全部溶出,净化除杂后可回收钴和锂.","authors":[{"authorName":"卢毅屏","id":"94761baf-072d-4307-a710-c5951ae13c9a","originalAuthorName":"卢毅屏"},{"authorName":"夏自发","id":"064eb6d4-5237-41ae-8e4c-40390a44a3b0","originalAuthorName":"夏自发"},{"authorName":"冯其明","id":"04db85bc-8953-45cc-be64-f3d76a4d8702","originalAuthorName":"冯其明"},{"authorName":"龙涛","id":"a8815b39-d602-488d-8d22-debee3b909e2","originalAuthorName":"龙涛"},{"authorName":"欧乐明","id":"36aeac46-0267-451a-a197-e202454c2d58","originalAuthorName":"欧乐明"},{"authorName":"张国范","id":"d2fd085a-511d-4396-ad74-56d7acfc97b5","originalAuthorName":"张国范"}],"doi":"","fpage":"997","id":"a9a44779-7010-4920-a8b3-10415a7a9764","issue":"6","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"019d7cc0-0e15-40e5-90c2-e16d7d0c2e11","keyword":"废锂离子电池","originalKeyword":"废锂离子电池"},{"id":"2daae24f-7675-415a-971e-016d4c1c795f","keyword":"集流体","originalKeyword":"集流体"},{"id":"6c0c1ad2-ec86-407c-bf5b-2170a0c22eba","keyword":"活性物质","originalKeyword":"活性物质"},{"id":"8aacb709-7f24-4304-9c58-1a71fc8b38a7","keyword":"稀酸浸出","originalKeyword":"稀酸浸出"}],"language":"zh","publisherId":"zgysjsxb200706026","title":"废锂离子电池中集流体与活性物质的分离","volume":"17","year":"2007"},{"abstractinfo":"集流体用穿孔箔是锂离子电容器的重要组成部分,不仅为锂离子电容器电极预掺锂提供通道,使锂离子迅速、均匀地掺杂到整个电极中,而且还承载电极活性材料,并将产生的电流汇集起来.系统地介绍了穿孔箔的主要结构参数(孔径、孔隙率)对锂离子电容器电化学性能的影响规律及其机理,并综述了锂离子电容器集流体用穿孔箔的制备方法,最后展望了穿孔箔的发展趋势.","authors":[{"authorName":"徐启远","id":"4b22da1c-4e6f-488b-bbe2-00e7bcdd6112","originalAuthorName":"徐启远"},{"authorName":"徐永进","id":"26e61d9e-394b-41ea-9e4f-d43017a6fc68","originalAuthorName":"徐永进"},{"authorName":"朱永法","id":"2dede54e-220b-4ede-85a3-f5d846797a1f","originalAuthorName":"朱永法"},{"authorName":"姜冬冬","id":"f8d6602b-a99c-48a6-9374-5f419e2fa8f3","originalAuthorName":"姜冬冬"}],"doi":"","fpage":"28","id":"0eb958e4-15d4-42e0-a811-0495cf08e032","issue":"23","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"7256bdca-6da4-45c1-8ab2-9b1d8b2eb31f","keyword":"集流体","originalKeyword":"集流体"},{"id":"209e08e5-4c54-449a-b764-a14f47ff2aa0","keyword":"穿孔箔","originalKeyword":"穿孔箔"},{"id":"94cb7c31-12a1-4a86-9679-9fb341c66a8c","keyword":"锂离子电容器","originalKeyword":"锂离子电容器"},{"id":"3423da46-04ba-47ed-b3ab-ba195d6548fd","keyword":"预掺锂","originalKeyword":"预掺锂"}],"language":"zh","publisherId":"cldb201323006","title":"锂离子电容器集流体用穿孔箔的研究进展","volume":"27","year":"2013"},{"abstractinfo":"在高能扣式碱性锌锰电池负极集流体表面制备出一种性能良好的高氢过电位材料Zn-In合金.采用线性扫描阴极极化曲线、X射线衍射(XRD)、扫描电镜(SEM)、能谱分析(EDS)、交流阻抗(EIS)及电池气胀高度检测等方法研究Zn-In合金材料的性质、各组分的含量以及对电池性能的影响.结果表明:该Zn-In合金材料显著提高了集流体析氢过电位,从而有效地抑制电池气胀, 改善电池性能,同时降低生产成本,且对环境友好,因此用于代替In电沉积具有广阔的应用前景.","authors":[{"authorName":"蔡宗平","id":"b2756a3a-5a07-427a-8a21-467586dc3e2a","originalAuthorName":"蔡宗平"},{"authorName":"周合兵","id":"ecc10826-31fe-4908-bb42-6734932db4a1","originalAuthorName":"周合兵"},{"authorName":"李伟善","id":"22618194-a150-4c10-a887-d46506d7f323","originalAuthorName":"李伟善"},{"authorName":"黄启明","id":"5ed81173-3409-4315-9222-064885822407","originalAuthorName":"黄启明"},{"authorName":"梁英","id":"37438b4f-087a-4348-b25d-3d8d6c41d9bf","originalAuthorName":"梁英"},{"authorName":"肖秀华","id":"7e04eb14-ddc8-45c9-a439-55e15432ec88","originalAuthorName":"肖秀华"},{"authorName":"陈锦清","id":"73744e27-dfb4-4b6e-93f8-30dcb4e5d1e8","originalAuthorName":"陈锦清"}],"doi":"","fpage":"1676","id":"df42d3a3-4012-40d6-86c6-489ae9f0d6c4","issue":"9","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"08830bdf-8ea5-4eee-b7f7-3532202a6e31","keyword":"集流体","originalKeyword":"集流体"},{"id":"a804ec24-a065-44c8-9894-098a9eef89a5","keyword":"化学镀","originalKeyword":"化学镀"},{"id":"9f23e289-bf5a-4598-bc04-4570d3cb0b82","keyword":"高氢过电位材料","originalKeyword":"高氢过电位材料"},{"id":"d9ef84b5-7ce2-44aa-9877-040671c5466e","keyword":"Zn-In合金","originalKeyword":"Zn-In合金"},{"id":"d8465ddc-6228-4383-a884-670592c02daf","keyword":"析氢","originalKeyword":"析氢"},{"id":"a37b5866-766b-4b02-915c-b21949bfaad1","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"xyjsclygc200909039","title":"负极集流体表面处理方法及对电池性能的影响","volume":"38","year":"2009"},{"abstractinfo":"为了改善锂硫电池的循环性能,以纸纤维为基体,多壁碳纳米管(MWCNTs)为导电剂,采用真空抽滤法制得MWCNTs导电纸,并将MWCNTs导电纸作为正极集流体代替铝箔应用于锂硫电池.对MWCNTs导电纸进行了形貌结构表征和电化学性能测试,并对循环后的MWCNTs导电纸电极进行EDS检测.结果显示,MWCNTs均匀地附着在纸纤维基体上,多空隙的MWCNTs导电纸三维结构明显.采用MWCNTs导电纸作集流体的锂硫电池在0.05 C和1C倍率充放电下循环30次,比容量分别保持615 mAh/g、496 mAh/g,库伦效率达97.5%以上,且电荷转移电阻在循环后降低.EDS元素分析结果证实MWCNTs导电纸对多硫化锂有吸附作用,从而一定程度抑制了锂硫电池的穿梭效应.因此,以MWCNTs导电纸作为集流体能有效增加活性物质硫的负载量和接触面积,使锂硫电池具有良好的循环稳定性和库伦效率性能.","authors":[{"authorName":"刘珍红","id":"face1fb8-c3e3-4d20-8ea4-a652ae8630d2","originalAuthorName":"刘珍红"},{"authorName":"孙晓刚","id":"5dedd569-5b9d-48b0-8619-b994707d0766","originalAuthorName":"孙晓刚"},{"authorName":"邱治文","id":"7841dec4-1e88-4045-94be-4f50ffbbd9e0","originalAuthorName":"邱治文"},{"authorName":"陈珑","id":"fab6e914-6178-401b-9d56-0935b0a37ef2","originalAuthorName":"陈珑"},{"authorName":"蔡满园","id":"187f8670-9472-4227-af48-6d97b830709d","originalAuthorName":"蔡满园"}],"doi":"10.13801/j.cnki.fhclxb.20160905.001","fpage":"873","id":"4ba6fbde-ab30-4ac9-b174-def01f189f2f","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"9113e61f-0078-4d15-b69a-c900df6df5cc","keyword":"锂硫电池","originalKeyword":"锂硫电池"},{"id":"9046bc49-8afa-474f-9af6-b4fd94455755","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"0e6ad105-443f-43e0-8aac-628423caf5b3","keyword":"导电纸","originalKeyword":"导电纸"},{"id":"c794f443-1162-40d8-8ce2-b36b6005fd94","keyword":"集流体","originalKeyword":"集流体"},{"id":"16a07b28-d437-4226-b01e-01620150fb7f","keyword":"库伦效率","originalKeyword":"库伦效率"}],"language":"zh","publisherId":"fhclxb201704023","title":"多壁碳纳米管纸作正极集流体的锂硫电池性能","volume":"34","year":"2017"},{"abstractinfo":"采用超轻的碳纳米管(Carbon nanotubes, CNTs)宏观膜替代传统的金属铝集流体,替换后的锂离子电池以 LiCoO2为活性物质,在1 C 条件下电池首次放电比容量为132.8 mAh·g-1,500次循环后容量保持率高于80%;当正极材料层面密度为16 mg·cm-2时,LiCoO2-CNT 电极的能量密度比 LiCoO2-Al 电极提高25%;同时,CNTs 膜作为正极集流体的电池自放电率低于1.5%。该 CNTs 膜经电流刺激后仍保持较高的石墨化程度,相比金属集流体,其表面束状的多孔结构可有效保证正极材料层和集流体间的紧密接触。该膜有望替代传统铝箔成为新一代锂离子电池用集流体。","authors":[{"authorName":"钟盛文","id":"c94e9ab7-dcaf-46c8-b8dc-87b6a7d03ae9","originalAuthorName":"钟盛文"},{"authorName":"胡经纬","id":"8c068247-33e9-4fb2-af3d-d5b833cdb0ca","originalAuthorName":"胡经纬"},{"authorName":"吴子平","id":"c11c8dbb-3f73-4153-9c4e-241b44cc746e","originalAuthorName":"吴子平"},{"authorName":"梅文捷","id":"067e8d0b-5c49-447c-8b40-0b42b1852c86","originalAuthorName":"梅文捷"}],"doi":"","fpage":"322","id":"22037e57-334a-464f-b173-6f28518cdc73","issue":"4","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"d49b1bed-dc46-4818-9219-583d7365aca8","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"6cf011c3-734e-467b-8b8d-2a335348a55a","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"54cdb656-bffe-44a8-8b14-e30723c3bebd","keyword":"集流体","originalKeyword":"集流体"},{"id":"ac4aef54-cdd4-4087-9c3e-13dd1c9c1999","keyword":"能量密度","originalKeyword":"能量密度"}],"language":"zh","publisherId":"xxtcl201404017","title":"正极集流体为碳纳米管宏观膜的锂离子电池及其性能","volume":"","year":"2014"},{"abstractinfo":"报道了制备钒电池集流体用聚四氟乙烯导电塑料的制备方法,研究了不同种类和不同用量的炭系导电填料对聚四氟乙烯导电塑料性能的影响,探讨了导电填料层积复合法对样品的性能影响.研究结果表明,石墨填料是聚四氟乙烯导电塑料中较理想的导电填料;用量77%的石墨能够在样品中形成完整的导电网络,相应的体积电阻率为0.070 Ω-cm,拉伸强度12 MPa;层积复合法能够大幅度地提高样品的导电性;高温烧结工序能够提高样品的导电性能;样品具有良好的防渗漏、耐强酸腐蚀和电化学腐蚀性能;该材料可用作钒电池的集流体,有望在钒电池中得到应用.","authors":[{"authorName":"陈茂斌","id":"1a70e360-ca1b-4eb8-85b1-e6a327cd0242","originalAuthorName":"陈茂斌"},{"authorName":"张胜涛","id":"5cbd6504-1b7d-4f8b-b4ea-292e416603b9","originalAuthorName":"张胜涛"},{"authorName":"李晓兵","id":"723ec900-017c-44bc-9105-42fba36373d1","originalAuthorName":"李晓兵"},{"authorName":"刘联","id":"89860c1f-cad0-47a8-b869-685c6b8b228e","originalAuthorName":"刘联"},{"authorName":"刘效疆","id":"53c3a1cd-6f79-44bd-96a4-388ad50f5f24","originalAuthorName":"刘效疆"},{"authorName":"孟凡明","id":"56454c18-de8e-4cad-9d29-12654b35700c","originalAuthorName":"孟凡明"}],"doi":"","fpage":"121","id":"a88b5cd1-41e0-4ddc-8107-2a32894a705d","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"aaaf2920-d786-4cca-a534-f945a00070b6","keyword":"导电塑料","originalKeyword":"导电塑料"},{"id":"d814e229-6c0a-4671-a352-3f94ac2d171b","keyword":"集流体","originalKeyword":"集流体"},{"id":"828335de-e2ba-4da6-b454-40ac02ef51ba","keyword":"体积电阻率","originalKeyword":"体积电阻率"}],"language":"zh","publisherId":"gfzclkxygc200906034","title":"钒电池集流体用聚四氟乙烯导电塑料的制备与性能","volume":"25","year":"2009"},{"abstractinfo":"以电解二氧化锰(EMD)为正极活性材料,多壁碳纳米管(MWCNTs)为导电剂,纸纤维为基体制得复合纸,并将复合纸代替石墨片集流体和正极片应用于柔性锌锰电池。采用扫描电子显微镜对复合纸进行表征,并通过恒流放电测试其放电性能。结果显示,采用复合纸的电池放电比容量是传统锌锰电池的3倍,使 E MD 利用率从7.4%提高到43.8%,且在较大电流放电和弯曲放电情况下仍能保持明显的放电性能优势。","authors":[{"authorName":"刘珍红","id":"54192db4-c84c-45ae-a189-7cf026d3fa3d","originalAuthorName":"刘珍红"},{"authorName":"孙晓刚","id":"c56af8b0-7e7c-48d4-b006-1bdf72f2c334","originalAuthorName":"孙晓刚"},{"authorName":"庞志鹏","id":"6cb0a8b2-c92c-430e-87b1-3465e5df1a3d","originalAuthorName":"庞志鹏"},{"authorName":"吴小勇","id":"99d9ff6b-4b62-4033-b893-66d428bee709","originalAuthorName":"吴小勇"},{"authorName":"聂艳艳","id":"dd5fda0e-9282-4200-972a-b9a9bd535687","originalAuthorName":"聂艳艳"},{"authorName":"岳立福","id":"c26d5205-7b6b-4f8f-9d46-69f09c7c21a6","originalAuthorName":"岳立福"}],"doi":"10.11896/j.issn.1005-023X.2016.20.004","fpage":"17","id":"3ba4bd4e-0104-4c99-b53d-c99445454975","issue":"20","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"90264af3-819a-4e86-80c6-abc854ce2c84","keyword":"复合纸","originalKeyword":"复合纸"},{"id":"67fd30a1-dd7e-40ba-9fde-ee2da934e6d9","keyword":"柔性电池","originalKeyword":"柔性电池"},{"id":"72211a70-eb26-469c-a1eb-a937691e8984","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"04f98d5d-379e-48b1-be3b-eea36e3b9958","keyword":"集流体","originalKeyword":"集流体"},{"id":"67e2e1f2-179b-40bf-b96c-ceaac943e060","keyword":"锌锰电池","originalKeyword":"锌锰电池"}],"language":"zh","publisherId":"cldb201620004","title":"以电解二氧化锰/多壁碳纳米管/纸纤维复合材料作集流体和正极片的高能量柔性锌锰电池?","volume":"30","year":"2016"},{"abstractinfo":"采用电沉积法制备镀银泡沫镍集流体以替代银网,通过SEM,XRD及电化学测试等手段对其进行表征及性能分析.结果表明,银颗粒以块状结晶在泡沫镍上,镀层改善了以泡沫镍为集流体的电化学行为.尤其是沉积电流密度为3 mA·cm-2时,镀层致密均匀,且镀银层在保证锌电极反应活性的同时,提高了锌电极的耐蚀性,以此制成模拟锌银电池,其高电流密度的放电电压平稳,具有良好的电性能.","authors":[{"authorName":"张辉","id":"1d8c712d-72a2-469f-b399-73f2d81217b6","originalAuthorName":"张辉"},{"authorName":"朱立群","id":"c5ea1c58-7ce8-4bd6-9b3b-e85ddfbfa3e2","originalAuthorName":"朱立群"},{"authorName":"项民","id":"c8143eb3-a64d-4903-9f71-553d732a1c70","originalAuthorName":"项民"}],"doi":"","fpage":"89","id":"18f1addf-3d1d-4e74-8711-b2da828fbbf2","issue":"1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"b66467ff-78a6-407d-b1d0-7f63b02d915d","keyword":"镀银泡沫镍","originalKeyword":"镀银泡沫镍"},{"id":"b617c578-f00d-4c84-82a3-97c6a85e50d0","keyword":"集流体","originalKeyword":"集流体"},{"id":"a789ae60-31f4-4b6b-a04c-796e0dcfc45a","keyword":"锌电极","originalKeyword":"锌电极"},{"id":"a8fba320-3abd-4d49-b1f3-003ced6440b2","keyword":"锌银蓄电池","originalKeyword":"锌银蓄电池"}],"language":"zh","publisherId":"xyjsclygc200801021","title":"锌银蓄电池中镀银泡沫镍的电化学性能研究","volume":"37","year":"2008"}],"totalpage":245,"totalrecord":2448}