传统观点认为酶促反应并不会影响酶本身的扩散运动。最近的研究表明,在酶促反应过程中,酶分子的扩散系数会增大,而且其增大强度具有底物依赖性,即随着底物浓度的增加而增大。酶促反应分子马达,是利用酶促反应过程中产生的能量驱动纳米或微米级物体的运动。尽管在几种不同的酶体系中的研究已经证实了酶在催化过程中的底物依赖性,但是造成酶扩散增强的原因至今仍不清楚。本文从酶促反应过程中酶自身扩散系数的变化、酶自身扩散系数变化的可能机理及其应用等3个方面,对酶在催化过程中的底物依赖性以及酶促分子马达的研究进展进行了综述。
参考文献:
[1] Riedel C, Gabizon R, Wilson C A, Hamadani K, Tsekouras K, Marqusee S, Presse S, Bustamante C.. Nature, 2015,517(7533):227-230
[2] Yadav V, Duan W, Butler P J, Sen A.. Annu. Rev. Biophys., 2015,44(1):77-100
[3] Puchner E M, Gaub H E.. Annu. Rev. Biophys., 2012,41(1):497-518
[4] Goel A, Vogel V.. Nat. Nanotechnol., 2008,3(8):465-475
[5] Sengupta S, Dey K K, Muddana H S, Tabouillot T, Ibele M E, Butler P J, Sen A.. J. Am. Chem. Soc., 2013,135(4):1406-1414
[6] Lipowsky R, Beeg J, Dimova R, Klumpp S, Liepelt S, Muller M J I, Valleriani A.. Biophys. Rev. Lett., 2009,4(01n02):77-137
[7] Adler J.. Science, 1969,166(3913):1588-1597
[8] Berg H C, Brown D A.. Nature, 1972,239(1):500-504
[9] Sengupta S, Patra D, Ortiz-Rivera I, Agrawal A, Shklyaev S, Dey K K, Co'rdova-Figueroa U, Mallouk T E, Sen A.. Nat. Chem., 2014,6(5):415-422
[10] Yu H, Jo K, Kounovsky K L, de Pablo J J, Schwartz D C.. J. Am. Chem. Soc., 2009,131(16):5722-5723
[11] Muddana H S, Sengupta S, Mallouk T E, Sen A, Butler P J.. J. Am. Chem. Soc., 2010,132(7):2110-2111
[12] Dey K K, Zhao X, Tansi B M, Mendez-Ortiz W J, Cordova-Figueroa U M, Golestanian R, Sen A.. Nano. Lett., 2015,15(12):8311-8315
[13] Wang W, Duan W, Ahmed S, Sen A, Mallouk T E.. Acc. Chem. Res., 2015,48(7):1938-1946
[14] Sengupta S, Ibele M E, Sen A.. Angew. Chem. Int. Ed., 2012,51(34):8434-8445
[15] Sanchez S, Soler L, Katuri J.. Angew. Chem. Int. Ed., 2015,54(5):1414-1444
[16] Wang H, Pumera M.. Chem. Rev., 2015,115(16):8704-8735
[17] Campuzano S, Kagan D, Orozco J, Wang J.. Analyst, 2011,136(22):4621-4630
[18] Guix M, Mayorga-Martinez C C, Merkoci A.. Chem. Rev., 2014,114(12):6285-6322
[19] Hong Y, Blackman N M, Kopp N D, Sen A, Velegol D.. Phys. Rev. Lett., 2007,99(17):178103
[20] Baraban L, Harazim S M, Sanchez S, Schmidt O G.. Angew. Chem. Int. Ed., 2013,52(21):5552-5556
[21] Bunea A-I, Pavel I-A, David S, Gaspar S.. Biosens. Bioelectron., 2015,67:42-48
[22] Baraban L, Tasinkevych M, Popescu M N, Sanchez S, Dietrich S, Schmidt O G.. Soft. Matter., 2012,8(1):48-52
[23] Patra D, Sengupta S, Duan W, Zhang H, Pavlick R, Sen A.. Nanoscale, 2013,5(4):1273-1283
[24] Wang W, Duan W, Ahmed S, Mallouk T E, Sen A.. Nano Today, 2013,8(5):531-554
[25] Zhang H, Duan W, Liu L, Sen A.. J. Am. Chem. Soc., 2013,135(42):15734-15737
[26] Masaeli M, Sollier E, Amini H, Mao W, Camacho K, Doshi N, Mitragotri S, Alexeev A, Di Carlo D.. Phys. Rev. X, 2012,2(3):031017
[27] Ito Y, Shinomiya K.. J. Clin. Apheresis, 2001,16(4):186-191
[28] Kwon K W, Choi S S, Lee S H, Kim B, Lee S N, Park M C, Kim P, Hwang S Y, Suh K Y.. Lab Chip, 2007,7(11):1461-1468
[29] Cui H, Voldman J, He X, Lim K.. Lab Chip, 2009,9(16):2306-2312
[30] Weigl B H, Yager P.. Science, 1999, 283(5400):346-347
[31] Dey K K, Das S, Poyton M F, Sengupta S, Butler P J, Cremer P S, Sen A.. ACS Nano, 2014,8(12):11941-11949