新型炭材料, 2017, 32(1): 21-26.
10.1016/S1872-5805(17)60103-3
还原剂气相反应和液相反应制备石墨烯的比较研究

常云珍 1, , 韩高义 2, , 肖尧明 3, , 周海涵 4, , 董建华 5,

1.山西大学 分子科学研究所,能量转换与存储材料山西省重点实验室,化学生物学与分子工程教育部重点实验室,山西 太原 030006;
2.山西大学 分子科学研究所,能量转换与存储材料山西省重点实验室,化学生物学与分子工程教育部重点实验室,山西 太原 030006;
3.山西大学 分子科学研究所,能量转换与存储材料山西省重点实验室,化学生物学与分子工程教育部重点实验室,山西 太原 030006;
4.山西大学 分子科学研究所,能量转换与存储材料山西省重点实验室,化学生物学与分子工程教育部重点实验室,山西 太原 030006;
5.山西大学 分子科学研究所,能量转换与存储材料山西省重点实验室,化学生物学与分子工程教育部重点实验室,山西 太原 030006

在低于200℃下,以甲醛、甲酸为还原剂用两种不同的方法还原氧化石墨烯(GO):一种是将GO与液态的还原剂反应(液相反应);另一种是将GO与还原剂蒸气反应(气相反应).分别研究了还原剂用量、还原温度和还原时间对还原的氧化石墨烯(rGO)电导率的影响,并通过X-射线衍射,X射线光电子能谱和拉曼光谱对代表性的rGO表征.结果表明:气相反应温度为150℃,而液相反应温度为175℃时rGO的电导率最大.与相对较短的反应时间相比,反应时间延长到24 h时,气相反应得到的rGO的C 1s峰相关的C—C和C—O的峰面积比(Rcc/co)明显下降,而液相反应得到的rGO的Rcc/co略增加.
关键词: 氧化石墨烯   石墨烯   甲醛   甲酸
引用: 常云珍, 韩高义, 肖尧明, 周海涵, 董建华 还原剂气相反应和液相反应制备石墨烯的比较研究. 新型炭材料, 2017, 32(1): 21-26. doi: 10.1016/S1872-5805(17)60103-3
参考文献:
[1] Virendra Singh;Daeha Joung;Lei Zhai;Soumen Das;Saiful I. Khondaker;Sudipta Seal.Graphene based materials: Past, present and future[J].Progress in materials science,20118(8):1178-1271.
[2] 马延文;刘忠儒;王博琳;朱磊;杨建平;李兴鳌.石墨烯负载Pt-Co纳米粒子及其在氧化还原反应中的应用[J].新型炭材料,2012(4):250-257.
[3] Sutter, PW;Flege, JI;Sutter, EA.Epitaxial graphene on ruthenium[J].Nature Materials,20085(5):406-411.
[4] Pierre Trinsoutrot;Hugues Vergnes;Brigitte Caussat.Three dimensional graphene synthesis on nickel foam by chemical vapor deposition from ethylene[J].Materials Science & Engineering, B. Solid-State Materials for Advanced Technology,20141(1):12-16.
[5] Muge Acik;Javier Carretero-Gonzalez;Elizabeth Castillo-Martinez.Reconstructed Ribbon Edges in Thermally Reduced Graphene Nanoribbons[J].The journal of physical chemistry, C. Nanomaterials and interfaces,201245(45):24006-24015.
[6] Li D;Muller MB;Gilje S;Kaner RB;Wallace GG.Processable aqueous dispersions of graphene nanosheets[J].Nature nanotechnology,20082(2):101-105.
[7] Junfeng Li;Hong Lin;Zhilong Yang.A method for the catalytic reduction of graphene oxide at temperatures below 150 ℃[J].Carbon: An International Journal Sponsored by the American Carbon Society,20119(9):3024-3030.
[8] Songfeng Pei;Jinping Zhao;Jinhong Du.Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids[J].Carbon: An International Journal Sponsored by the American Carbon Society,201015(15):4466-4474.
[9] Wang GX;Yang J;Park J;Gou XL;Wang B;Liu H;Yao J.Facile synthesis and characterization of graphene nanosheets[J].The journal of physical chemistry, C. Nanomaterials and interfaces,200822(22):8192-8195.
[10] Chen, F.;Liu, S.;Shen, J.;Wei, L.;Liu, A.;Chan-Park, M.B.;Chen, Y..Ethanol-assisted graphene oxide-based thin film formation at pentane-water interface[J].Langmuir: The ACS Journal of Surfaces and Colloids,201115(15):9174-9181.
[11] Dachao Luo;Guoxin Zhang;Junfeng Liu.Evaluation Criteria for Reduced Graphene Oxide[J].The journal of physical chemistry, C. Nanomaterials and interfaces,201123(23):11327-11335.
[12] M. J. Fernandez-Merino;L. Guardia;J. I. Paredes.Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions[J].The journal of physical chemistry, C. Nanomaterials and interfaces,201014(14):6426-6432.
[13] 万武波;赵宗彬;胡涵;周泉;范彦如;邱介山.柠檬酸钠绿色还原制备石墨烯[J].新型炭材料,2011(1):16-20.
[14] Zhibin Lei;Li Lu;X. S. Zhao.The electrocapacitive properties of graphene oxide reduced by urea[J].Energy & environmental science: EES,20124(4):6391-6399.
[15] Gurunathan, S.;Han, J.;Kim, J.H..Humanin: A novel functional molecule for the green synthesis of graphene[J].Colloids and Surfaces, B. Biointerfaces,2013:376-383.
[16] 盛凯旋;徐宇曦;李春;石高全.化学还原氧化石墨烯制备高性能石墨烯自组装水凝胶[J].新型炭材料,2011(1):9-15.
[17] Yunzhen Chang;Gaoyi Han;Miaoyu Li.Graphene-modified carbon fiber mats used to improve the activity and stability of Pt catalyst for methanol electrochemical oxidation[J].Carbon: An International Journal Sponsored by the American Carbon Society,201115(15):5158-5165.
[18] Yonglang Guo;Yanzhen Zheng;Meihua Huang.Enhanced activity of PtSn/C anodic electrocatalyst prepared by formic acid reduction for direct ethanol fuel cells[J].Electrochimica Acta,20087(7):3102-3108.
[19] Zhen-Dbng Huang;Biao Zhang;Rui Liang.Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers[J].Carbon: An International Journal Sponsored by the American Carbon Society,201211(11):4239-4251.
[20] Cheng-Meng Chen;Jia-Qi Huang;Qiang Zhang.Annealing a graphene oxide film to produce a free standing high conductive graphene film[J].Carbon: An International Journal Sponsored by the American Carbon Society,20122(2):659-667.
[21] 李永锋;刘燕珍;杨永岗;王茂章;温月芳.多壁碳纳米管-还原氧化石墨烯杂化薄膜导电性能的调控[J].新型炭材料,2012(2):117-122.
[22] Cheng-Meng Chen;Qiang Zhang;Mang-Guo Yang.Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors[J].Carbon: An International Journal Sponsored by the American Carbon Society,201210(10):3572-3584.
[23] Han, T.H.;Huang, Y.-K.;Tan, A.T.L.;Dravid, V.P.;Huang, J..Steam etched porous graphene oxide network for chemical sensing[J].Journal of the American Chemical Society,201139(39):15264-15267.
[24] Kudin KN;Ozbas B;Schniepp HC;Prud'homme RK;Aksay IA;Car R.Raman spectra of graphite oxide and functionalized graphene sheets[J].Nano letters,20081(1):36-41.

相似文献: