中国有色金属学报(英文版), 2017, 27(1): 172-183.
10.1016/S1003-6326(17)60020-7
两相区各相激活能对Zr-2.5Nb-0.5Cu合金本构方程的影响

通过计算Zr?2.5Nb?0.5Cu合金两相区各相激活能,研究该合金在热变形过程中的主要存在相。在温度为700~925°C、应变速率为10?2~10?3 s?1的条件下对Zr?2.5Nb?0.5Cu合金进行热机械压缩实验。单相流动应力推广用于两相区各相流动应力的计算,然后利用所得两相区流动应力数据来计算各相的激活能。对计算所得激活能数据进行比较可知,α相为两相区的主要相(形变控制相)。根据形变温度范围或各相存在形式,采用正弦双曲线型本构方程建立了合金的本构方程。统计学分析结果表明,从相关系数(R)和平均相对误差(AARE)考虑,采用为某特定相建立的本构方程所得计算结果与实验结果相符。
引用: 两相区各相激活能对Zr-2.5Nb-0.5Cu合金本构方程的影响. 中国有色金属学报(英文版), 2017, 27(1): 172-183. doi: 10.1016/S1003-6326(17)60020-7
参考文献:
[1] Lin, Y.C.;Xia, Y.-C.;Chen, X.-M.;Chen, M.-S..Constitutive descriptions for hot compressed 2124-T851 aluminum alloy over a wide range of temperature and strain rate[J].Computational Materials Science,20101(1):227-233.
[2] Rusinek A.;Klepaczko JR..Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress[J].International Journal of Plasticity,20011(1):87-115.
[3] Hongjian Zhang;Weidong Wen;Haitao Cui;Ying Xu.A modified Zerilli-Armstrong model for alloy IC10 over a wide range oftemperatures and strain rates[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20091/2(1/2):328-333.
[4] Dean L. Preston;Davis L. Tonks;Duane C. Wallace.Model of plastic deformation for extreme loading conditions[J].Journal of Applied Physics,20031(1):211-220.
[5] George Z. Voyiadjis;Amin H. Almasri.A physically based constitutive model for fcc metals with applications to dynamic hardness[J].Mechanics of materials,20086(6):549-563.
[6] JIN Zhao-yang;LIU Juan;CUI Zhen-shan;WEI Dong-lai.Identification of nucleation parameter for cellular automaton model of dynamic recrystallization[J].中国有色金属学报(英文版),2010(03):458-464.
[7] R. L. Goetz;V. Seetharamn.Modeling dynamic recrystallization using cellular automata[J].Scripta materialia,19983(3):405-413.
[8] Khan AS.;Takacs L.;Zhang HY..Mechanical response and modeling of fully compacted nanocrystalline iron and copper[J].International Journal of Plasticity,200012(12):1459-1476.
[9] Farrokh, B;Khan, AS.Grain size, strain rate, and temperature dependence of flow stress in ultra-fine grained and nanocrystalline Cu and Al: Synthesis, experiment, and constitutive modeling[J].International Journal of Plasticity,20095(5):715-732.
[10] A. Molinari;G. Ravichandran.Constitutive modeling of high-strain-rate deformation in metals based on the evolution of an effective microstructural length[J].Mechanics of materials,20057(7):737-752.
[11] A. Marchattiwar;A. Sarkar;J. K. Chakravartty;B. P. Kashyap.Dynamic Recrystallization during Hot Deformation of 304 Austenitic Stainless Steel[J].Journal of Materials Engineering and Performance,20138(8):2168-2175.
[12] Li, Jianping;Xia, Xiangsheng.Modeling High Temperature Deformation Behavior of Large-Scaled Mg-Al-Zn Magnesium Alloy Fabricated by Semi-continuous Casting[J].Journal of Materials Engineering and Performance,20159(9):3539-3548.
[13] Mirzadeh, Hamed.A Simplified Approach for Developing Constitutive Equations for Modeling and Prediction of Hot Deformation Flow Stress[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20159(9):4027-4037.
[14] Nitin Kotkunde;Hansoge Nitin Krishnamurthy;Pavan Puranik;Amit Kumar Gupta;Swadesh Kumar Singh.Microstructure study and constitutive modeling of Ti-6Al-4V alloy at elevated temperatures[J].Materials & design,2014Feb.(Feb.):96-103.
[15] Y.C. Lin;Xiao-Min Chen.A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J].Materials & design,20114(4):1733-1759.
[16] Samantaray, D.;Phaniraj, C.;Mandal, S.;Bhaduri, A.K..Strain dependent rate equation to predict elevated temperature flow behavior of modified 9Cr-1Mo (P91) steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20113(3):1071-1077.
[17] Mirzadeh, Hamed.Constitutive Description of 7075 Aluminum Alloy During Hot Deformation by Apparent and Physically-Based Approaches[J].Journal of Materials Engineering and Performance,20153(3):1095-1099.
[18] Hamed Mirzadeh;Jose Maria Cabrera;Abbas Najafizadeh.Constitutive relationships for hot deformation of austenite[J].Acta materialia,201116(16):6441-6448.
[19] Dipti Samantaray;Sumantra Mandal;A.K. Bhaduri.An overview on constitutive modelling to predict elevated temperature flow behaviour of fast reactor structural materials[J].Transactions of the Indian Institute of Metals,20106(6):823-831.
[20] Jedoung Han Kim;S. L. Semiatin;Chong Soo Lee.Constitutive analysis of the high-temperature deformation of Ti-6Al-4V with a transformed microstructure[J].Acta materialia,200318(18):5613-5626.
[21] Yuan, Z.;Li, F.;Qiao, H.;Xiao, M.;Cai, J.;Li, J..A modified constitutive equation for elevated temperature flow behavior of Ti-6Al-4V alloy based on double multiple nonlinear regression[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:260-270.
[22] 张超;李小强;李东升;金朝海;肖军杰.Ti-6Al-4V合金高温拉伸变形Norton-Hoff与Arrhenius本构理论的模型化与比较[J].中国有色金属学报(英文版),2012(z2):457-464.
[23] Chen, Guang;Ren, Chengzu;Qin, Xuda;Li, Jun.Temperature dependent work hardening in Ti-6Al-4V alloy over large temperature and strain rate ranges: Experiments and constitutive modeling[J].Materials & design,2015Oct.15(Oct.15):598-610.
[24] 魏国兵;彭晓东;胡发平;Amir HADADZADEH;杨艳;谢卫东;Mary A WELLS.双相Mg-Li合金的热变形行为和本构模型[J].中国有色金属学报(英文版),2016(2):508-518.
[25] 秦春;姚泽坤;宁永权;石志峰;郭鸿镇.TC11/Ti-22Al-25Nb双合金的热变形行为[J].中国有色金属学报(英文版),2015(7):2195-2205.
[26] I. Balasundar;T. Raghu;B.P. Kashyap.Modeling the hot working behavior of near-αtitanium alloy IMI 834[J].自然科学进展(英文版),2013(6):598-607.
[27] Wanjara P;Jahazi M;Monajati H;Yue S;Immarigeon JP.Hot working behavior of near-alpha alloy IMI834[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20051/2(1/2):50-60.
[28] T. Seshacharyulu;S. C. Medeiros;W. G. Frazier;Y. V. R. K. Prasad.Hot working of commercial Ti-6Al-4V with an equiaxed α-β microstructure: materials modeling considerations[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20001/2(1/2):184-194.
[29] A. Sarkar;J.K. Chakravartty.Hot deformation behavior of Zr-1Nb alloy: Characterization by processing map[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,20131/3(1/3):136-142.
[30] Wen-Feng Zhang;Wei Sha;Wei Yan;Wei Wang;Yi-Yin Shan;Ke Yang.Constitutive Modeling, Microstructure Evolution, and Processing Map for a Nitride-Strengthened Heat-Resistant Steel[J].Journal of Materials Engineering and Performance,20148(8):3042-3050.
[31] Sanjib Banerjee;P.S. Robi;A. Srinivasan;Lakavath Praveen Kumar.High temperature deformation behavior of Al–Cu–Mg alloys micro-alloyed with Sn[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,201010/11(10/11):2498-2503.
[32] McQueen HJ.;Ryan ND..Constitutive analysis in hot working[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20021-2 Special Issue SI(1-2 Special Issue SI):43-63.
[33] HAMED MIRZADEH;ABBAS NAJAFIZADEH;MOHAMMAD MOAZENY.Flow Curve Analysis of 17-4 PH Stainless Steel under Hot Compression Test[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,200912(12):2950-2958.
[34] L. BRIOTTET;J. J. JONAS;F. MONTHEILLET.A MECHANICAL INTERPRETATION OF THE ACTIVATION ENERGY OF HIGH TEMPERATURE DEFORMATION IN TWO PHASE MATERIALS[J].Acta materialia,19964(4):1665-1672.
[35] Terence G. Langdon.An Analysis of Flow Mechanisms in High Temperature Creep and Superplasticity[J].Materials transactions,20059(9):1951-1956.
[36] Mukherjee AK..An examination of the constitutive equation for elevated temperature plasticity[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20021-2 Special Issue SI(1-2 Special Issue SI):1-22.
[37] Saadatkia, Sepideh;Mirzadeh, Hamed;Cabrera, Jose-Maria.Hot deformation behavior, dynamic recrystallization, and physically-based constitutive modeling of plain carbon steels[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2015:196-202.
[38] Hamed MIRZADEH.基于物理的2024和7075铝合金简化热变形本构方程[J].中国有色金属学报(英文版),2015(05):1614-1618.
[39] Rokni, M. R.;Zarei-Hanzaki, A.;Widener, C. A.;Changizian, P..The Strain-Compensated Constitutive Equation for High Temperature Flow Behavior of an Al-Zn-Mg-Cu Alloy[J].Journal of Materials Engineering and Performance,201411(11):4002-4009.

相似文献: