中国有色金属学报(英文版), 2017, 27(1): 110-116.
10.1016/S1003-6326(17)60012-8
采用XRD、SEM、EBSD、TEM、EDS以及三维组织重构方法系统研究原位Be元素的Ti基非晶复合材料Ti47Zr19Cu5V12Be17(摩尔分数,%)中晶体相的形态、尺寸、成分和体积分数,并采用STEM?EELS证明Be元素仅仅分布在非晶基体中。在此基础上,准确地得到了晶体相和非晶基体的化学成分分别为 Ti62.4Zr18.4Cu2.6V16.6和Ti28.3Zr19.7Cu8V6.4Be37.6(摩尔分数,%),相应的体积分数分别为61.5%和38.5%,该结果对设计原位含Be非晶复合材料具有重要的指导意义。
引用:
郭振玺,
王永胜,
朱陆军,
张跃飞,
张振华,
柯小行,
林均品,
郝国建,
张泽,
隋曼龄
含Be非晶复合材料中Be元素的分布.
中国有色金属学报(英文版),
2017, 27(1): 110-116.
doi: 10.1016/S1003-6326(17)60012-8
参考文献:
[1] Shiyan Ding;Yanhui Liu;Yanglin Li.Combinatorial development of bulk metallic glasses[J].Nature materials,20145(5):494-500.
[2] Bernd Gludovatz;Steven E. Naleway;Robert O. Ritchie.Size-dependent fracture toughness of bulk metallic glasses[J].Acta materialia,2014:198-207.
[3] 顾及;张立鑫;王依涵;倪颂;郭胜锋;宋旼.等温退火和预压处理对Cu36Zr48Al8Ag8大块非晶合金力学性能的共同影响[J].中国有色金属学报(英文版),2016(6):1620-1628.
[4] H.GUO;P.F.YAN;Y.B.WANG.Tensile ductility and necking of metallic glass[J].Nature materials,200710(10):735-739.
[5] 吴宏;兰小东;刘咏;李飞;张卫东;陈紫瑾;宰雄飞;曾晗.爆炸喷涂制备铁基非晶合金涂层的摩擦磨损特性及耐腐蚀性能[J].中国有色金属学报(英文版),2016(6):1629-1637.
[6] X. Hui;W. Dong;G.L. Chen.Formation, microstructure and properties of long-period order structure reinforced Mg-based bulk metallic glass composites[J].Acta materialia,20073(3):907-920.
[7] M.L. Lee;Y. Li;C.A. Schuh.Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites[J].Acta materialia,200414(14):4121-4131.
[8] X. Hu;S. C. Ng;Y. P. Feng;Y. li.Glass forming ability and in-situ composite formation in Pd-based bulk metallic glasses[J].Acta materialia,20032(2):561-572.
[9] Hays CC.;Johnson WL.;Kim CP..Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions[J].Physical review letters,200013(13):2901-2904.
[10] J.L. Cheng;G. Chen;F. Xu;Y.L. Du;Y.S. Li;C.T. Liu.Correlation of the microstructure and mechanical properties of Zr-based in-situ bulk metallic glass matrix composites[J].Intermetallics,201012(12):2425-2430.
[11] J. W. Qiao;Y. Zhang;H. L. Jia;H. J. Yang;P. K. Liaw;B. S. Xu.Tensile softening of metallic-glass-matrix composites in the supercooled liquid region[J].Applied physics letters,201212(12):121902-1-121902-4.
[12] Junwei Qiao.In-situ Dendrite/Metallic Glass Matrix Composites: A Review[J].材料科学技术(英文版),2013(8):685-701.
[13] Hofmann DC;Suh JY;Wiest A;Duan G;Lind ML;Demetriou MD;Johnson WL.Designing metallic glass matrix composites with high toughness and tensile ductility.[J].Nature,20087182(7182):1085-1089.
[14] C. Paul Kim;Jin-Yoo Suh;Aaron Wiest.Fracture toughness study of new Zr-based Be-bearing bulk metallic glasses[J].Scripta materialia,20092(2):80-83.
[15] Yongsheng Wang;Zhenxi Guo;Rui Ma;Guojian Hao;Yong Zhang;Junpin Lin;Manling Sui.Investigation of the microcrack evolution in a Ti-based bulk metallic glass matrix composite[J].自然科学进展(英文版),2014(2):121-127.
[16] J.W. Qiao;A.C. Sun;E.W. Huang.Tensile deformation micromechanisms for bulk metallic glass matrix composites: From work-hardening to softening[J].Acta materialia,201110(10):4126-4137.
[17] Y.S. Wang;G.J. Hao;J.W. Qiao.High strain rate compressive behavior of Ti-based metallic glass matrix composites[J].Intermetallics,2014:138-143.
[18] A. F. Jankowski;M. A. Wall;A. W. Van Buuren;T. G. Nieh;J. Wadsworth.From nanocrystalline to amorphous structure in beryllium-based coatings[J].Acta materialia,200219(19):4791-4800.
[19] X. F. Zhang;X. D. Wang;K. B. Kim.Be Effect on Glass-Forming Ability and Mechanical Properties of Ti-Cu-Co-Zr-Sn Bulk Metallic Glasses[J].Materials transactions,20069(9):2321-2325.
[20] Douglas C. Hofmann.Shape Memory Bulk Metallic Glass Composites[J].Science,2010Sep.10 TN.5997(Sep.10 TN.5997):1294-1295.
[21] Yoon S. Oh;Choongnyun Paul Kim;Simghak Lee.Microstructure and tensile properties of high-strength high-ductility Ti-based amorphous matrix composites containing ductile dendrites[J].Acta materialia,201119(19):7277-7286.
[22] Y.S. WANG;G.J. HAO;Y. ZHANG.Fabrication and Mechanical Characterization of Ti-Based Metallic Glass Matrix Composites by the Bridgman Solidification[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20145(5):2357-2362.
[23] Chen, P.;Mao, S.C.;Liu, Y.;Wang, F.;Zhang, Y.F.;Zhang, Z.;Han, X.D..In-situ EBSD study of the active slip systems and lattice rotation behavior of surface grains in aluminum alloy during tensile deformation[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:114-124.
[24] S.F. Guo;L. Liu;N. Li.Fe-based bulk metallic glass matrix composite with large plasticity[J].Scripta materialia,20106(6):329-332.
[25] G. He;W. Loser;J. Eckert.Enhanced plasticity in a Ti-based bulk metallic glass-forming alloy by in situ formation of a composite microstructure[J].Journal of Materials Research,200212(12):3015-3018.
[26] Hofmann, DC;Suh, JY;Wiest, A;Lind, ML;Demetriou, MD;Johnson, WL.Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility[J].Proceedings of the National Academy of Sciences of the United States of America,200851(51):20136-20140.
[27] Jin Man Park;Yu Chan Kim;Won Tae Kim.Ti-Based Bulk Metallic Glasses with High Specific Strength[J].Materials transactions,20042(2):595-598.
[28] O.N. Senkov;D.B. Miracle.Effect of the atomic size distribution on glass forming ability of amorPhous metallic alloys[J].Materials Research Bulletin: An International Journal Reporting Research on Crystal Growth and Materials Preparation and Characterization,200112(12):2183-2198.
[29] Akira Takeuchi;Akihisa Inoue.Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element (Overview)[J].Materials transactions,200512(12):2817-2829.