金属学报(英文版), 2016, 29(2): 163-172.
10.1007/s40195-016-0373-6

Ying Yan 1, , Wan-Peng Deng 1, , Zhan-Feng Gao 1, , Jing Zhu 1, 2, , Zhong-Jun Wang 2, , Xiao-Wu Li 1, 3,*,,

1. Institute of Materials Physics and Chemistry, School of Materials Science and Engineering, Northeastern University,Shenyang 110819, China;;
2. College of Materials and Metallurgy, Liaoning University of Science and Technology, Anshan 114051, China;;
3. Key Laboratory for Anisotropy and Texture of Materials,Ministry of Education, Northeastern University, Shenyang 110819, China

To explore the coupled effect of temperature T and strain rate ε˙ε˙ on the deformation features of AZ31 Mg alloy, mechanical behaviors and microstructural evolutions as well as surface deformation and damage features were systematically examined under uniaxial tension at T spanning from 298 to 523 K and ε˙ε˙ from 10-4 to 10-2 s-1. The increase in T or the decrease in ε˙ε˙ leads to the marked decrease in flow stress, the appearance of a stress quasi-plateau after an initially rapid strain hardening, and even to the occurrence of successive strain softening. Correspondingly, the plastic deformation modes of AZ31 Mg alloy transform from the predominant twinning and a limited amount of dislocation slip into the enhanced non-basal slip and the dynamic recrystallization (DRX) together with the weakened twinning. Meanwhile, the cracking modes also change from along grain boundaries (GBs) and at twin boundaries (TBs) or the end of twins into nearby GBs where the DRX has occurred. The appearance of a stress quasi-plateau, the formation of large-sized cracks nearby GBs, and the occurrence of continuous strain softening, are intimately related to the enhancement of the non-basal slip and the DRX.
关键词: AZ31   Mg   alloy   Uniaxial   tension   Temperature   Strain   rate   Deformation   Damage   Twinning
引用: Ying Yan, Wan-Peng Deng, Zhan-Feng Gao, Jing Zhu, Zhong-Jun Wang, Xiao-Wu Li . 金属学报(英文版), 2016, 29(2): 163-172. doi: 10.1007/s40195-016-0373-6
参考文献:
[1] B.L. Mordike, T. Ebert, Mater. Sci. Eng. A 302, 37 (2001)
[2] F. Li, X. Zeng, N. Bian, Mater. Lett. 135, 79 (2014)
[3] H. Zhang, Y. Yan, J.F. Fan, W.L. Cheng, H.J. Roven, B.S. Xu,H.B. Dong, Mater. Sci. Eng. A 618, 540 (2014)
[4] H. Zhang, G.S. Huang, J.H. Li, L.F. Wang, H.J. Roven, J. Alloys Compd. 563, 150 (2013)
[5] X. Shang, J. Zhou, X. Wang, Y. Luo, J. Alloys Compd. 629, 155 (2015)
[6] J. Deng, Y.C. Lin, S.S. Li, J. Chen, Y. Ding, Mater. Des. 49, 209 (2013)
[7] E. Karimi, A. Zarei-Hanzaki, M.H. Pishbin, H.R. Abedi, P.Changizian, Mater. Des. 49, 173 (2013)
[8] G. Bajargan, G. Singh, D. Sivakumar, U. Ramamurty, Mater.Sci. Eng. A 579, 26 (2013)
[9] Y. Koh, D. Kim, D.Y. Seok, J. Bak, S.W. Kim, Y.S. Lee, K.Chung, Inter. J. Mech. Sci. 93, 204 (2015)
[10] J.W. Liu, Z.H. Chen, D. Chen, G.F. Li, Trans. Nonferrous Met.Soc. China 22, 1329 (2012)
[11] F. Berge, L. Kru¨ger, H. Ouaziz, C. Ullrich, Trans. NonferrousMet. Soc. China 25, 1 (2015)
[12] I. Ulacia, N.V. Dudamell, F. Ga´lvez, S. Yi, M.T. Pe´rez-Prado, I.Hurtado, Acta Mater. 58, 2988 (2010)
[13] T. Al-Samman, Acta Mater. 57, 2229 (2009)
[14] S.R. Agnew, O ¨ . Duygulu, Int. J. Plast. 21, 1161 (2005)
[15] N.V. Dudamell, I. Ulacia, F. Ga´lvez, S. Yi, J. Bohlen, D. Letzig,I. Hurtado, M.T. Pe´rez-Prado, Mater. Sci. Eng. A 532, 528 (2012)
[16] D. Ponge, G. Gottstein, Acta Mater. 46, 69 (1998)
[17] G.Y. Cai, X.T. Huang, S.M. Qu, Phys. Proced. 50, 61 (2013)
[18] S. Spigarelli, O.A. Ruano, M. EI Mehtedi, J.A. Del Valle, Mater.Sci. Eng. A 570, 135 (2013)
[19] A.R. Antoniswamy, A.J. Carpenter, J.T. Carter, L.G. Hector Jr,E.M. Taleff, J. Mater. Eng. Perform. 22, 3389 (2013)
[20] F.K. Chen, T.B. Huang, C.K. Chang, Inter. J. Mach. Tools Manuf. 43, 1553 (2003)
[21] F. Kabirian, A.S. Khan, T. Gna¨upel-Herlod, Int. J. Plast. 68, 1 (2015)
[22] A. Chapuis, J.H. Driver, Acta Mater. 59, 1986 (2011)
[23] H.L. Kim, W.K. Bang, Y.W. Chang, Mater. Sci. Eng. A 528,5356 (2011)
[24] H. Li, Q.Q. Duan, X.W. Li, Z.F. Zhang, Mater. Sci. Eng. A 466,38 (2007)
[25] L.L. Li, P. Zhang, Z.J. Zhang, H.F. Zhou, S.X. Qu, J.B. Yang,Z.F. Zhang, Acta Mater. 73, 167 (2014)
[26] A. Jain, S.R. Agnew, Mater. Sci. Eng. A 462, 29 (2007)
[27] J.G. Yun, Y. Yan, F.W. Long, X.W. Li, Mater. Trans. 54, 1709 (2013)
[28] M.T. Tucker, M.F. Horstemeyer, P.M. Gullett, H. EI Kadiri,W.R. Whittington, Scr. Mater. 60, 182 (2009)
[29] Q. Liu, Acta Metall. Sin. 46, 1458 (2010). (in Chinese)
[30] R.O. Kaibyshev, B.K. Sokolov, A.M. Galiyev, Texture Microstruct.32, 47 (1999)
[31] J.A. Del Valle, M.T. Perez-Prado, O.A. Ruano, Mater. Sci. Eng.A 355, 68 (2003)
[32] L. Wen, P. Chen, Z.F. Tong, B.Y. Tang, L.M. Peng, W.J. Ding,Eur. Phys. J. B 72, 397 (2009)
[33] A.E. Smith, Sur. Sci. 601, 5762 (2007)
[34] S.E. Ion, F.J. Humphreys, S.H. White, Acta Metall. 30, 1909 (1982)
[35] Z.Q. Cui, Metallurgy and Heat Treatment (Mechanical Industry Press, Beijing, 2002), p. 206. (in Chinese)
[36] F.W. Long, Q.W. Jiang, L. Xiao, X.W. Li, Mater. Trans. 52,1617 (2011)

相似文献: