金属学报(英文版), 2016, 29(2): 150-155.
10.1007/s40195-016-0371-8

Cui-Hong Li *, , Qi-Qiang Duan , Zhe-Feng Zhang

Shenyang National Laboratory for Materials Science,Institute of Metal Research, Chinese Academy of Sciences,Shenyang 110016, China

A new parameter, i.e., tearing toughness, was employed to characterize the mechanical properties of some ductile metals (Cu, Cu-2 wt% Be, Cu-Al alloys, and some steels) by using three-leg trousers tearing tests. The experimental results demonstrate that their tearing toughness is not a physical constant and shows a close relationship with the materials’ types and microstructures. It can be inferred that the tearing toughness of different ductile metals has their respective variation range, expectantly, and may be represented by the comprehensive mechanical properties of strength and ductility for various ductile materials.
关键词: Ductile   metals   Strength   Ductility   Tearing   toughness
引用: Cui-Hong Li, Qi-Qiang Duan, Zhe-Feng Zhang . 金属学报(英文版), 2016, 29(2): 150-155. doi: 10.1007/s40195-016-0371-8
参考文献:
[1] W.F. Hosford, Mechanical Behavior of Materials (Cambridge University Press, Cambridge, 2005), pp. 1-69
[2] M. Ashby, H. Schercliff, D. Cebon, Materials Engineering Science Processing and Design (Elsevier, Oxford, 2007)
[3] R.Z. Valiev, Adv. Eng. Mater. 5, 296 (2003)
[4] R.E. Smallman, R.J. Bishop, Modern Physical Metallurgy and Materials Engineering, 6th edn. (Butterworth-Heinemann,Oxford, 1999), pp. 259-296
[5] T.H. Courtney, Mechanical Behavior of Materials (McGraw-Hill Companies, New York, 2004), pp. 454-521
[6] Y.W. Mai, B. Cotterell, Inter. J. Fract. 24, 229 (1984)
[7] Y.W. Mai, B. Cotterell, Eng. Fract. Mech. 21(1), 123 (1985)
[8] Y.W. Mai, B. Cotterell, Inter. J. Fract. 32, 105 (1986)
[9] S. Kang, N.J. Grant, Mater. Sci. Eng. 72, 155 (1985)
[10] G. Lu, H. Fan, B. Wang, Met. Mater. 4, 432 (1998)
[11] R. Mahmudi, J. Mater. Proc. Technol. 118, 316 (2001)
[12] R. Mahmudi, R. Mohammadi, P. Sepehrband, J. Mater. Proc.Technol. 147, 185 (2004)
[13] R. Mohammadi, R. Mahmudi, Int. J. Plasticity 17, 1551 (2001)
[14] V.P. Naumenko, A.G. Atkins, Int. J. Fatigue 28, 494 (2006)
[15] J. Hennephof, J. Mech. Phys. Solids 4, 172 (1956)
[16] H. Vaughan, J. Ship Res. 24, 96 (1980)
[17] T.X. Yu, D.J. Zhang, Y. Zhang, Int. J. Mech. Sci. 30, 193 (1988)
[18] B. Cotterell, J.K. Reddel, Int. J. Fracture 24, 267 (1977)
[19] C.M. Muscat-Fenech, A.G. Atkins, Int. J. Fracture 67, 69 (1994)
[20] C. Muscat-Fenech, J.H. Liu, A.G. Atkins, J. Mater. Proc.Technol. 32, 301 (1992)
[21] B. Che´hab, Y. Bre´chet, J.C. Glez, P.J. Jacques, Scr. Mater. 55,999 (2006)
[22] E. Hamm, P. Reis, M. Leblanc, B. Romab, E. Cerda, Nat. Mater.7, 386 (2008)
[23] H.S. Kim, J. Karger-Kocsis, Acta Mater. 52, 3123 (2004)
[24] J.S.S. Wong, D. Ferrer-Balas, R.K.Y. Li, Y.W. Mai, M.L.Maspoch, H.J. Sue, Acta Mater. 51, 4929 (2003)
[25] C.H. Li, Q.Q. Duan, Z.F. Zhang, Mater. Sci. Eng. A 528, 1636 (2011)
[26] J.C. Pang, Q.Q. Duan, S.D. Wu, S.X. Li, Z.F. Zhang, Scr. Mater.63, 1085 (2010)
[27] C.H. Li, Q.Q. Duan, S. Qu, Z.F. Zhang, Mater. Sci. Eng. A 546,68 (2012)
[28] X.H. An, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, T.G.Langdon, Scr. Mater. 66, 227 (2012)
[29] X.H. An, S. Qu, S.D. Wu, Z.F. Zhang, J. Mater. Res. 26, 407 (2011)
[30] S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang,Z.G. Wang, S.D. Wu, Z.F. Zhang, Acta Mater. 57, 15 (2009)

相似文献: