金属学报(英文版), 2016, 29(2): 134-139.
10.1007/s40195-016-0369-2

Gang Wang 1,*,, , Zbigniew H. Stachurski 2,

1. Laboratory for Microstructures, Shanghai University,Shanghai 20044, China;;
2. Research School of Engineering, The Australian National University, Canberra, Australia

The homogeneous plastic flow in bulk metallic glasses (BMGs) must be elucidated by an appropriate atomistic mechanism. It is proposed that a so-called concordant shifting model, based on rearrangements of five-atom subclusters, can describe the plastic strain behaviour of BMGs in a temperature range from room temperature to the supercooled liquid region. To confirm the effectiveness of the atomic concordant shifting model, a comparative investigation between the vacancy/atom model and the concordant shifting model is carried out based on the estimation of the strain rate deduced from two models. Our findings suggest that the atomic concordant shifting model rather than the vacancy/atom exchange model can well predict the large strain rate in the superplasticity of BMGs.
引用: Gang Wang, Zbigniew H. Stachurski . 金属学报(英文版), 2016, 29(2): 134-139. doi: 10.1007/s40195-016-0369-2
参考文献:
[1] C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Mater. 55,4067 (2007)
[2] Y. Kawamura, T. Nakamura, A. Inoue, Scr. Mater. 39, 301 (1998)
[3] W.J. Kim, D.S. Ma, H.G. Jeong, Scr. Mater. 39, 1067 (2003)
[4] J. Lu, G. Ravichandran, W.L. Johnson, Acta Mater. 51, 3429 (2003)
[5] B. Gun, K.J. Laws, M. Ferry, J. Non-Cryst. Solids 352, 3896 (2006)
[6] J. Shen, G. Wang, J.F. Sun, Z.H. Stachurski, C. Yan, L. Ye, B.D.Zhou, Intermtallics 13, 79 (2005)
[7] G. Wang, I. Jackson, J.D. Fitz Gerald, J. Shen, Z.H. Stachurski,J. Non-Cryst. Solids 354, 1575 (2008)
[8] G. Wang, J. Shen, J.F. Sun, Y.J. Huang, J. Zou, Z.P. Lu, Z.H.Stachurski, B.D. Zhou, J. Non-Cryst. Solids 351, 209 (2005)
[9] Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, W.H.Wang, Science 315, 1835 (2007)
[10] R.C. Giffkins, Scr. Metall. 7, 27 (1973)
[11] J.W. Edington, K.N. Melton, C.P. Cutler, Prog. Mater Sci. 21, 61 (1976)
[12] T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in Metals and Ceramics (Cambridge University Press, Cambridge, 1997),p. 240
[13] V.A. Levashov, J.R. Morris, T. Egami, Phys. Rev. Lett. 106,115703 (2011)
[14] F. Spaepen, Acta Metall. 25, 407 (1977)
[15] H. Nakajima, T. Kojima, K. Nonaka, T. Zhang, A. Inoue, N.Nishiyama, Mater. Res. Soc. Symp. Proc. 644, L2.2.1 (2001)
[16] H. Eyring, J. Chem. Phys. 4, 283 (1936)
[17] C.Y. Lee, T.R. Welberry, Z.H. Stachurski, Acta Mater. 58, 615 (2010)
[18] J.D. Eshelby, Proc. R. Soc. A 241, 376 (1957)
[19] A.R. Yavari, A. Le Moulec, A. Inoue, N. Nishiyama, N. Lupu,E. Matsubara, W.J. Botta, G. Vaughan, M. Di Michiel, A. Kvick,Acta Mater. 53, 1611 (2005)
[20] R. Ekambaram, P. Thamburaja, N. Nikabdullah, Mech. Mater.40, 487 (2008)
[21] M. Heggen, F. Spaepen, M. Feuerbacher, J. Appl. Phys. 97,033506 (2005)
[22] J.C. Ye, J. Lu, C.T. Liu, Q. Wang, Y. Yang, Nat. Mater. 9, 619 (2010)
[23] A.S. Argon, Acta Metall. 27, 47 (1979)
[24] P. Thamburaja, N. Nikabdullah, Scr. Mater. 65, 751 (2011)
[25] G. Wang, N. Mattern, J. Bednarcˇı´k, R. Li, B. Zhang, J. Eckert,Acta Mater. 60, 3074 (2012)
[26] K. Trachenko, V.V. Brazhkin, J. Phys.: Condens. Matter 21,425104 (2009)
[27] W. Dmowski, T. Iwashita, C.P. Chuang, J. Almer, T. Egami,Phys. Rev. Lett. 105, 205502 (2010)
[28] Z.Y. Liu, G. Wang, K.C. Chan, J.L. Ren, X.L. Bian, Y.J. Huang,X.H. Xu, D.S. Zhang, Y.L. Gao, Q.J. Zhai, J. Appl. Phys. 114,033520 (2013)
[29] Z. Wang, B.A. Sun, H.Y. Bai, W.H. Wang, Nat. Commun. 5,5823 (2014)
[30] B.A. Sun, Z.Y. Liu, Y. Yang, C.T. Liu, Appl. Phys. Lett. 105,091904 (2014)
[31] Q. Wang, S.T. Zhang, Y. Yang, Y.D. Dong, C.T. Liu, J. Lu, Nat.Commun. 6, 7876 (2015)
[32] B.A. Sun, W.H. Wang, Prog. Mater Sci. 74, 211 (2015)G. Wang, Z. H. Stachurski: Acta Metall. Sin. (Engl. Lett.), 2016, 29(2), 134-139 139

相似文献: