钢铁研究学报(英文版), 2017, 24(1): 50-58.

Nanocrystalline and amorphous LaMg12-type alloy-Ni composites with a nominal composition of LaMg11 Ni+x wt.% Ni (x=100, 200) were synthesized via ball milling.The influences of ball mill-ing duration and Ni adding amount x on the gaseous and electrochemical hydrogen storage dynamics of the alloys were systematically studied.Gaseous hydrogen storage performances were studied by a differential scanning calorimeter and a Sievert apparatus.The dehydrogenation activation energy of the alloy hydrides was evaluated by Kissinger method.The electrochemical hydrogen storage dynam-ics of the alloys was investigated by an automatic galvanostatic system.The H atom diffusion and ap-parent activation enthalpy of the alloys were calculated.The results demonstrate that a variation in Ni content remarkably enhances the gaseous and electrochemical hydrogen storage dynamics perform-ance of the alloys.The gaseous hydriding rate and high-rate discharge (HRD) ability of the alloys ex-hibit maximum values with varying milling duration.However, the dehydriding kinetics of the alloys is always accelerated by prolonging milling duration.Specifically, rising milling time from 5 to 60 h makes the hydrogen desorption ratio (a ratio of the dehydrogenation amount in 20 min to the saturat-ed hydrogenation amount) increase from 57% to 66% for x=100 alloy and from 57% to 70% for x=200.Moreover, the improvement of gaseous hydrogen storage kinetics is attributed to the descending of dehydrogenation activation energy caused by the prolonging of milling duration and growing of Ni content.
关键词:
引用: . 钢铁研究学报(英文版), 2017, 24(1): 50-58. doi: 
参考文献:

相似文献: