{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"透明导电氧化物(TCO)的出现开拓了光电子器件研究的新领域.但pTCO的相对匮乏严重制约了透明氧化物半导体(TOS)相关器件的开发与应用.CuAlO2作为一种天然的pTCO成为近年来pTCO的研究热点.介绍了pTCO的研究现状,综述了不同制备方法制备pCuAlO2薄膜的研究进展,以及在器件方面的应用,并对其前景进行了展望.","authors":[{"authorName":"李军","id":"caf4d052-dfd2-4662-b07a-417ccff7425b","originalAuthorName":"李军"},{"authorName":"兰伟","id":"92ba7b19-decb-421c-a06d-e7edc3528a97","originalAuthorName":"兰伟"},{"authorName":"张铭","id":"e7f6c104-bd92-4066-bc3a-0892b58ce5c4","originalAuthorName":"张铭"},{"authorName":"董国波","id":"344d7ec5-40e8-4e8b-a938-2a2ee8cf63cf","originalAuthorName":"董国波"},{"authorName":"严辉","id":"ea59e3f2-74af-4da5-a0ce-1c0a2b01dda6","originalAuthorName":"严辉"}],"doi":"","fpage":"115","id":"3313655c-6e23-48b8-b16c-e4636f6a57c6","issue":"3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"e5597f41-a768-45e3-9080-7d1e227f3565","keyword":"透明导电氧化物(TCO)","originalKeyword":"透明导电氧化物(TCO)"},{"id":"59b2247a-c32c-4f7f-8e49-a6fb4c58fb7f","keyword":"pTCO","originalKeyword":"p型TCO"},{"id":"c3859981-6f77-47e6-b8c9-b12b2428d8e6","keyword":"CuAlO2薄膜","originalKeyword":"CuAlO2薄膜"}],"language":"zh","publisherId":"cldb200703031","title":"p透明导电氧化物CuAlO2薄膜的研究进展","volume":"21","year":"2007"},{"abstractinfo":"介绍了p铜铁矿结构氧化物ABO2的晶体结构、电子结构和光、电学特性,讨论了A位原子、B位原子和氧原子对材料光、电学性能的影响,综述了p铜铁矿结构透明导电氧化物(Transparent Conductive Oxide,TCO)薄膜的制备方法与研究现状.","authors":[{"authorName":"邓赞红","id":"7e9ae5ac-4a6f-4ce9-9bfa-10b066f9a744","originalAuthorName":"邓赞红"},{"authorName":"董伟伟","id":"df403a30-669a-4ef0-a58c-1c483fb8537c","originalAuthorName":"董伟伟"},{"authorName":"陶汝华","id":"ed64083a-02f7-49a1-b8af-2df82d296bfe","originalAuthorName":"陶汝华"},{"authorName":"苏清磊","id":"8e7f22fc-ba8e-497f-9b5f-4de3f31d6854","originalAuthorName":"苏清磊"},{"authorName":"方晓东","id":"6ef39d85-d4eb-4980-a866-bbca35315e96","originalAuthorName":"方晓东"}],"doi":"","fpage":"37","id":"b3e1dc33-5966-4760-a08b-ae4e33c3caf3","issue":"3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"e15ad5e7-be20-423c-8ed1-1d5ee9c094c3","keyword":"铜铁矿","originalKeyword":"铜铁矿"},{"id":"288c63f3-fddd-4a6b-875d-c2f858bb3779","keyword":"透明导电氧化物","originalKeyword":"透明导电氧化物"},{"id":"ec642e0b-a42d-40be-97b5-7c30dcea3303","keyword":"薄膜","originalKeyword":"薄膜"}],"language":"zh","publisherId":"cldb200603010","title":"p铜铁矿结构氧化物材料研究进展","volume":"20","year":"2006"},{"abstractinfo":"运用模拟软件AFORS-HET对TCO/a-Si∶ H(n)/a-Si∶ H(i)/c-Si(p)/Ag结构的异质结(HIT)太阳电池进行仿真,分析其光伏输出特性随发射层掺杂浓度、晶硅衬底掺杂浓度、透明导电氧化物薄膜(TCO)的选择以及TCO功函数的变化规律.结果显示,当发射层掺杂浓度大于1.0×1020 cm-3,晶硅衬底掺杂浓度大于1.2×1016 cm3,以ZnO为TCO层且ZnO的功函数低于4.4 eV时,电池的开路电压、短路电流密度、填充因子及电池转换效率达到最优值,光电转换效率最高达到19.18%.","authors":[{"authorName":"姚尧","id":"150f4b53-cd75-404c-9496-66a0aed74ac3","originalAuthorName":"姚尧"},{"authorName":"肖少庆","id":"2df599c5-537b-4663-a6d7-820e111703fe","originalAuthorName":"肖少庆"},{"authorName":"刘晶晶","id":"1888e7e4-a5b4-4a28-8c88-dd6ace779df2","originalAuthorName":"刘晶晶"},{"authorName":"顾晓峰","id":"4ec50c9f-70c5-427e-8d9c-22730dbfddc9","originalAuthorName":"顾晓峰"}],"doi":"","fpage":"935","id":"19bb6c1b-5ad5-4a1f-bcc7-cee16154d1e7","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"cd1318fc-4048-40fb-ba60-f5336c7067ef","keyword":"异质结太阳电池","originalKeyword":"异质结太阳电池"},{"id":"9bbf6281-dd81-48ea-9c5d-00685ecb8e37","keyword":"透明导电氧化物薄膜","originalKeyword":"透明导电氧化物薄膜"},{"id":"5c091bef-c20d-497f-9116-998adfa36180","keyword":"AFORS-HET","originalKeyword":"AFORS-HET"},{"id":"42a9e7b5-4659-44ac-a57b-9e75f37e9536","keyword":"功函数","originalKeyword":"功函数"}],"language":"zh","publisherId":"rgjtxb98201604015","title":"利用AFORS-HET对PHIT太阳电池的模拟优化","volume":"45","year":"2016"},{"abstractinfo":"ZnO薄膜是一种应用广泛的半导体材料.近几年来,随着对ZnO的光电性质及其在光电器件方面应用的开发研究,ZnO薄膜成为研究热点之一.制备掺杂的pZnO是形成同质p-n结以及实现其实际应用的重要途径.近来已在pZnO及其同质结发光二极管(LEDs)研究方面取得了较大的进展.目前报道的pZnO薄膜的电阻率已降至10-3 Ω·cm量级.得到了具有较好非线性伏安特性的ZnO同质p-n结和紫外发光LED.本文就其最新进展进行了综述.","authors":[{"authorName":"盛苏","id":"bd0d08f6-7bf8-4e82-ab12-9010b7bf2852","originalAuthorName":"盛苏"},{"authorName":"方国家","id":"6865cc2a-f49b-487a-89f7-daecfa50bbff","originalAuthorName":"方国家"},{"authorName":"袁龙炎","id":"edfd6b96-c696-4872-880e-d6cb01762db0","originalAuthorName":"袁龙炎"}],"doi":"10.3969/j.issn.1005-0299.2006.06.020","fpage":"637","id":"fefb0a0e-2d58-47a6-8e0f-051a492b03d3","issue":"6","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"e5ec00a3-aba6-40a1-b1c4-3c8e2eaed165","keyword":"ZnO薄膜","originalKeyword":"ZnO薄膜"},{"id":"cf439f33-7eda-461c-be88-93d32089a4e8","keyword":"p掺杂","originalKeyword":"p型掺杂"},{"id":"8cbec4e6-3b2b-44ab-a43c-b1df1de04267","keyword":"同质p-n结","originalKeyword":"同质p-n结"}],"language":"zh","publisherId":"clkxygy200606020","title":"pZnO薄膜研究进展","volume":"14","year":"2006"},{"abstractinfo":"概括地阐述了ZnO透明导电薄膜(ZnO-TCO)的特性及其在薄膜太阳电池中的应用,介绍了ZnO薄膜在薄膜太阳电池中的应用背景,阐明了它在其中的作用及ZnO-TCO薄膜的主流生长方法,并给出了近年来ZnO-TCO薄膜的主要研究结果,最后展望了其应用和发展趋势.","authors":[{"authorName":"陈新亮","id":"c554cd8e-9497-4986-8c2b-ec314cdc5a43","originalAuthorName":"陈新亮"},{"authorName":"薛俊明","id":"309276f7-0008-4d22-8730-58ceef94e323","originalAuthorName":"薛俊明"},{"authorName":"赵颖","id":"3693850d-97e0-4b86-80cf-4bfdde01bb37","originalAuthorName":"赵颖"},{"authorName":"耿新华","id":"adde00bd-3bc7-456d-bab8-06d4d66fe714","originalAuthorName":"耿新华"}],"doi":"","fpage":"22","id":"94771dcb-a78c-4f7f-85e5-ba2cbc2b0e51","issue":"5","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"e94923c3-3ef7-4969-aa5a-97688b2acc66","keyword":"ZnO薄膜","originalKeyword":"ZnO薄膜"},{"id":"ef0886fc-5d81-491e-a2d9-2c30220a8ec1","keyword":"透明导电氧化物","originalKeyword":"透明导电氧化物"},{"id":"ef01809d-0364-441a-80ba-9a774d3ffb45","keyword":"陷光作用","originalKeyword":"陷光作用"},{"id":"75bf9e20-7300-4179-8be9-b6d24fa8dc08","keyword":"太阳电池","originalKeyword":"太阳电池"}],"language":"zh","publisherId":"cldb200605007","title":"ZnO-TCO薄膜及其在太阳电池中的应用","volume":"20","year":"2006"},{"abstractinfo":"阐述了玻璃衬底、柔性衬底透明导电氧化物薄膜(Transparent conductive oxides-TCO)以及硅基薄膜太阳电池应用方面的最新研究成果.绒面结构可以提高薄膜太阳电池效率和稳定性并降低生产成本.磁控溅射技术和LP-MOCVD技术是制造绒面结构ZnO-TCO薄膜(例如“弹坑”状和“类金字塔”状表面)的主流生长技术;高迁移率TCO薄膜(IMO、IWO、ZnO∶Ga等)以及柔性衬底TCO薄膜是研究开发的重点.","authors":[{"authorName":"陈新亮","id":"27574d6c-f78c-4203-ad9e-d671b6118db0","originalAuthorName":"陈新亮"},{"authorName":"王斐","id":"a915e672-bf2e-4394-95f4-9d61b9b1b101","originalAuthorName":"王斐"},{"authorName":"闫聪博","id":"074897ed-7314-4afa-a9a7-9e8a31562320","originalAuthorName":"闫聪博"},{"authorName":"李林娜","id":"ffd31a09-f816-462e-8857-e85f86af6482","originalAuthorName":"李林娜"},{"authorName":"林泉","id":"a8d6da7a-fa54-4a9f-a046-db2e3bd11eec","originalAuthorName":"林泉"},{"authorName":"倪牮","id":"fc69f4ee-8c82-4dcf-b901-61a1b896bb62","originalAuthorName":"倪牮"},{"authorName":"张晓丹","id":"3305aef7-7f81-4ff1-9800-1ab8ca25102b","originalAuthorName":"张晓丹"},{"authorName":"耿新华","id":"1cc6b110-0c32-4943-81c5-e73aa9ff5c40","originalAuthorName":"耿新华"},{"authorName":"赵颖","id":"9158f3a8-b90a-4b11-9453-2e70628e5e35","originalAuthorName":"赵颖"}],"doi":"","fpage":"73","id":"46bc00fb-d2c3-42c4-8386-c222afb31d22","issue":"18","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"86220f01-a58a-4d47-a230-22d66e23a81a","keyword":"镀膜技术","originalKeyword":"镀膜技术"},{"id":"5855855f-d68e-4397-9761-4677f9831b58","keyword":"TCO薄膜","originalKeyword":"TCO薄膜"},{"id":"d64738ce-a209-48e4-af6d-f277655d3cc8","keyword":"绒面结构","originalKeyword":"绒面结构"},{"id":"b58a4a52-52d8-4b96-9161-8b8d43e80bfe","keyword":"高迁移率","originalKeyword":"高迁移率"},{"id":"a7a03119-0dfc-4b7d-96d4-32312dc42555","keyword":"缓冲层","originalKeyword":"缓冲层"},{"id":"20b07378-2153-48ee-a291-97037c2fa823","keyword":"梯度掺杂","originalKeyword":"梯度掺杂"},{"id":"3766b3db-1ff1-4961-9e1f-40ed42cbd897","keyword":"薄膜太阳电池","originalKeyword":"薄膜太阳电池"}],"language":"zh","publisherId":"cldb201118020","title":"薄膜太阳电池用TCO薄膜制造技术及其特性研究","volume":"25","year":"2011"},{"abstractinfo":"ZnO薄膜作为一种多功能半导体材料,近年来一直受到广泛关注.然而,如何制备高质量的pZnO薄膜是实现其实用化的关键.概括了p掺杂困难的原因,并指出Ⅲ-Ⅴ族元素共掺杂可能是p掺杂的最好方法.简单回顾了ZnO薄膜p掺杂的研究现状,并对今后的发展趋势进行了展望.","authors":[{"authorName":"李驰平","id":"62afb121-f485-4b95-a732-2f40371a2b2c","originalAuthorName":"李驰平"},{"authorName":"张铭","id":"bdaa3cf2-3970-4b19-a843-84950b2839f4","originalAuthorName":"张铭"},{"authorName":"宋雪梅","id":"4faa11d0-e254-49d2-9960-512ad55750ad","originalAuthorName":"宋雪梅"},{"authorName":"王波","id":"5fe242e1-a485-411f-a481-f7b97fe0f53d","originalAuthorName":"王波"},{"authorName":"李彤","id":"76f20d59-50b8-4bbe-af9b-50b3578431e8","originalAuthorName":"李彤"},{"authorName":"严辉","id":"5d4e91b8-415b-4af3-b857-cddf38c1ba35","originalAuthorName":"严辉"}],"doi":"","fpage":"297","id":"0f016fdd-38f2-481c-823c-40349d04bd12","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"caca69fd-3b35-4729-8f56-7a6650c66091","keyword":"ZnO薄膜","originalKeyword":"ZnO薄膜"},{"id":"2b4e4700-9374-40d8-ab54-ca8559925e8f","keyword":"p掺杂","originalKeyword":"p型掺杂"},{"id":"54baa584-2149-43bb-a6ab-dbb63cfe83fe","keyword":"共掺杂方法","originalKeyword":"共掺杂方法"}],"language":"zh","publisherId":"cldb2007z1090","title":"ZnO薄膜p掺杂的研究进展","volume":"21","year":"2007"},{"abstractinfo":"随着近年来各种形貌ZnO纳米材料的生长及ZnO纳米器件的研究,ZnO纳米材料的p掺杂逐渐成为研究的重点之一.主要介绍了ZnO纳米材料的p掺杂及其器件研究进展,简要讨论了当前掺杂研究的局限,展望了今后的发展方向.","authors":[{"authorName":"唐海平","id":"a7e2f6ca-9483-489c-aa51-36d780478ae1","originalAuthorName":"唐海平"},{"authorName":"马权","id":"a3b34e34-e450-44c1-9e36-5adf38f24399","originalAuthorName":"马权"},{"authorName":"何海平","id":"aaf9be13-709d-4f50-a079-52bc37e3e885","originalAuthorName":"何海平"},{"authorName":"叶志镇","id":"207382e5-dcc0-46d0-ab46-e82d51b4933a","originalAuthorName":"叶志镇"},{"authorName":"","id":"b73fc60d-1098-49d6-8242-5b566ce8d243","originalAuthorName":""}],"doi":"","fpage":"44","id":"4ab7f501-93af-4d05-a7d3-4451ab8b700e","issue":"15","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"1b54e795-ffa4-41a5-832e-02c3b0b52e3c","keyword":"ZnO","originalKeyword":"ZnO"},{"id":"b9f6e97c-5511-4615-a06c-5215de774272","keyword":"纳米材料","originalKeyword":"纳米材料"},{"id":"5b010277-7f46-40a9-8132-17191e65ca78","keyword":"p掺杂","originalKeyword":"p型掺杂"}],"language":"zh","publisherId":"cldb201015009","title":"ZnO纳米材料的p掺杂研究进展","volume":"24","year":"2010"},{"abstractinfo":"应用射频反应磁控溅射的方法,将ZnO薄膜沉积于高磷掺杂的n+Si衬底上.在沉积和后退火过程中,磷向ZnO薄膜扩散并被激活,使ZnO薄膜由n转化为p,从而形成pZnO薄膜.X射线衍射分析(XRD)证明了所制备的ZnO薄膜都是高c轴取向的六角纤锌矿结构的薄膜.电学I-V关系曲线的整流特性和空穴浓度≥1.78×1018 /cm3的霍耳效应测试结果证明了pZnO薄膜的形成.","authors":[{"authorName":"丁瑞钦","id":"a7379117-f255-4d14-947c-f23d170207a8","originalAuthorName":"丁瑞钦"},{"authorName":"朱慧群","id":"7eea6695-1015-4f92-b657-3043899e9ad3","originalAuthorName":"朱慧群"},{"authorName":"曾庆光","id":"cf5fa165-df5b-43ca-9a95-fec6f02cd606","originalAuthorName":"曾庆光"},{"authorName":"林民生","id":"716ed985-19d5-446a-94d7-8377e7f8aa49","originalAuthorName":"林民生"},{"authorName":"冯文胜","id":"bbbd0294-59d5-4fa2-8a03-162ef483b95a","originalAuthorName":"冯文胜"},{"authorName":"梁毅斌","id":"3ef55456-c276-4ee4-8948-1a084670841a","originalAuthorName":"梁毅斌"},{"authorName":"梁满堂","id":"314fe703-17df-4232-82cd-0af003f85660","originalAuthorName":"梁满堂"},{"authorName":"梁达荣","id":"b5020cf4-cb9d-4aa6-befa-0c603e954c72","originalAuthorName":"梁达荣"}],"doi":"10.3969/j.issn.1000-985X.2007.04.031","fpage":"859","id":"fa3d036b-b148-4bec-be15-23c94f2e1217","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"6dba5921-2590-4fa7-bb60-0ec846d54505","keyword":"磷扩散","originalKeyword":"磷扩散"},{"id":"4aac7047-020c-49d9-ad7d-330ba1764198","keyword":"pZnO薄膜","originalKeyword":"p型ZnO薄膜"},{"id":"d46e3ea9-2650-4306-b0a9-be3f19a15249","keyword":"磁控溅射","originalKeyword":"磁控溅射"},{"id":"1296ee47-bba9-434f-a73b-7fbf7089dac2","keyword":"异质ZnO p-n结","originalKeyword":"异质ZnO p-n结"}],"language":"zh","publisherId":"rgjtxb98200704031","title":"磷扩散法制备PZnO薄膜","volume":"36","year":"2007"},{"abstractinfo":"对NSi80Ge20(P4)x及PSi80Ge20Bx固溶体合金的化学计量比进行了研究,采用已总结出的最佳工艺条件,制备了一系列NP固溶体合金,并比较了各系列样品的热电性能.结果表明,x=1.5的NSi80Ge20(P4)x固溶体合金具备良好的热电性能,与未掺杂Si80Ge20固溶体合金相比,最高热电优值ZT为0.651,提高了3.34倍.x=1.5的PSi80Ge20Bx固溶体合金也具备较佳的热电性能,最高热电优值(ZT)值为0.538.","authors":[{"authorName":"毛斐","id":"c20ac18a-a2bb-4da5-931b-c3a70e4686b8","originalAuthorName":"毛斐"},{"authorName":"吴振兴","id":"70900cd6-8983-42db-b4d4-c8ba5f91f9ce","originalAuthorName":"吴振兴"},{"authorName":"汤皎宁","id":"a66f91c6-2e7e-4bb0-b817-d900360f102c","originalAuthorName":"汤皎宁"},{"authorName":"王涵","id":"f00d1ef9-8560-403a-8b50-b9f2e56cfdd5","originalAuthorName":"王涵"},{"authorName":"刘正楷","id":"a754afa3-2150-4ee7-9882-dc2d04956420","originalAuthorName":"刘正楷"},{"authorName":"龚晓钟","id":"fd846d93-76ad-45a3-9979-1e6ec1483bc0","originalAuthorName":"龚晓钟"}],"doi":"","fpage":"6","id":"50a515d5-9656-4ab9-9841-f9e9592ba332","issue":"7","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"5de692af-dec2-4d4a-b0de-f82cb5bde40a","keyword":"热电材料","originalKeyword":"热电材料"},{"id":"4997c3ff-0488-48e0-83b9-4bd5d684d0cc","keyword":"Si80Ge20","originalKeyword":"Si80Ge20"},{"id":"aeced09a-bafb-46ff-b07f-c3d14b67ea09","keyword":"粉末冶金","originalKeyword":"粉末冶金"},{"id":"6c7cce7b-52d5-430b-b124-267e4707d97e","keyword":"热电性能","originalKeyword":"热电性能"}],"language":"zh","publisherId":"jsrclxb201307002","title":"NPSi80Ge20合金制备及热电性能","volume":"34","year":"2013"}],"totalpage":2672,"totalrecord":26711}