{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用熔炼方法, 研究了Ni-石墨合金在不同冷却条件下石墨的生长形貌.结果表明: 随着过冷度增大, 石墨逐渐由片状形态向球状形态转变.提出石墨在生长过程中由结晶潜热引起棱面与基面的温差是影响其生长形态的重要因素.建立了石墨表面温度变化速率与过冷度及界面能之间的数学关系.计算结果表明, 在没有杂质元素的影响下, 过冷度越大, 越利于石墨(0001)基面的生长, 随着S, O等元素的增加, 石墨棱面的界面能逐渐降低, 有利于片状石墨的生长.球化剂Ce, Mg等元素与S, O反应后, 重新使石墨棱面的界面能提高, 有利于球状石墨的成长.","authors":[{"authorName":"朱定一","id":"8d4f161a-ff06-448f-8052-094b8ba7710c","originalAuthorName":"朱定一"},{"authorName":"关翔锋","id":"410f8b1b-0ff5-456b-b977-75869bde29e9","originalAuthorName":"关翔锋"},{"authorName":"陈丽娟","id":"ceaa2451-7a35-47f5-b4ea-e1e215b3bae0","originalAuthorName":"陈丽娟"},{"authorName":"汤伟","id":"a7d254b0-2748-44fc-99fb-c16f74e8832d","originalAuthorName":"汤伟"}],"doi":"10.3969/j.issn.0258-7076.2005.02.007","fpage":"156","id":"a2a6c152-33a8-4b1f-95c5-ae6c75e2c82a","issue":"2","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"ec792901-5ade-4be4-a3c5-32f8cce6c244","keyword":"石墨形貌","originalKeyword":"石墨形貌"},{"id":"bc7b978d-24b1-4b5d-81bc-581315cd2b51","keyword":"结晶潜热","originalKeyword":"结晶潜热"},{"id":"11fe21f1-5a3d-4bd7-baeb-b66dc8233c28","keyword":"过冷度","originalKeyword":"过冷度"},{"id":"9edcc337-1e6a-4eae-8c0b-314a41920d3f","keyword":"界面能","originalKeyword":"界面能"},{"id":"fbdeced8-3309-4422-b106-0caf6d3655cc","keyword":"稀土球化剂","originalKeyword":"稀土球化剂"}],"language":"zh","publisherId":"xyjs200502007","title":"过冷对石墨生长形态的影响","volume":"29","year":"2005"},{"abstractinfo":"铸件凝固结晶潜热的释放行为与凝固传热、溶质传输及铸造合金种类与成分等诸多因素有关, 合金凝固过程中其温度、固相体积分数与液相成分(T-fs-CL)三者之间一般存在着非线性强耦合关系. 采用合金凝固传输统一模型及温度回升(补偿)法提出的处理任意结晶温度区间(包括零结晶区间)凝固潜热释放问题的数值迭代计算方法, 对不同合金成分与不同固相反扩散疚的二维Al-Cu合金铸件定向凝固传输过程进行了数值计算, 表明该方法对于从纯金属到区晶成分的不同成分合金及从Scheil模型到Lever-Rule模型之间的作意凝固模式均是有效的. 将该方法推广应用于叶片铸件三维凝固传输过程的T-fs-CL耦合数值模拟仍显示出高的计算效率, 通过对计算结果进行的三维图像数据处理, 展示了铸件几何形状对凝固传输行为的重要影响.","authors":[{"authorName":"白云峰","id":"4f31241a-7dfb-432a-9e49-9f5a7cd3ffb1","originalAuthorName":"白云峰"},{"authorName":"徐达鸣","id":"ac46f24a-ff55-4449-a4df-5a26961c16a9","originalAuthorName":"徐达鸣"},{"authorName":"郭景杰","id":"8b9a85c1-3dd1-4949-82f5-41d32a66df60","originalAuthorName":"郭景杰"},{"authorName":"傅恒志","id":"871bdfd2-f417-4cc7-8e3c-8f29ca33188f","originalAuthorName":"傅恒志"}],"categoryName":"|","doi":"","fpage":"623","id":"def16526-4c7c-4e05-85ea-3cd81d833149","issue":"6","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"d826edfb-d281-43fe-8cf8-1843dcbf63e5","keyword":"凝固传输","originalKeyword":"凝固传输"},{"id":"9d6525d1-348f-4455-be11-eb94b6b7787b","keyword":"null","originalKeyword":"null"},{"id":"23ed19bc-9d6c-4f7b-9d83-fdbafe16a552","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2003_6_1","title":"采用温度回升法对任意结晶区间的铸件凝固结晶潜热的数值计算","volume":"39","year":"2003"},{"abstractinfo":"铸件凝固结晶潜热的释放行为与凝固传热、溶质传输及铸造合金种类与成分等诸多因素有关,合金凝固过程中其温度、固相体积分数与液相成分(T-fs-CL)三者之间一般存在着非线性强耦合关系.采用合金凝固传输统一模型及温度回升(补偿)法提出的处理任意结晶温度区间(包括零结晶区间)凝固潜热释放问题的数值迭代计算方法,对不同合金成分与不同固相反扩散效应的二维Al-Cu合金铸件定向凝固传输过程进行了数值计算,表明该方法对于从纯金属到共晶成分的不同成分合金及从Scheil模型到Lever-Rule模型之间的任意凝固模式均是有效的.将该方法推广应用于叶片铸件三维凝固传输过程的T-fs-CL耦合数值模拟仍显示出高的计算效率.通过对计算结果进行的三维图像数据处理,展示了铸件几何形状对凝固传输行为的重要影响.","authors":[{"authorName":"白云峰","id":"01cb99e2-5329-4a44-9bbe-5c50c0c88af8","originalAuthorName":"白云峰"},{"authorName":"徐达鸣","id":"5c465f6c-0697-47c8-a5fb-e27e2aed8466","originalAuthorName":"徐达鸣"},{"authorName":"郭景杰","id":"8eca0557-b21d-4bf7-acf9-db157ae9c184","originalAuthorName":"郭景杰"},{"authorName":"傅恒志","id":"84dd91d7-f6cb-42a1-81e6-c1fcd85353e7","originalAuthorName":"傅恒志"}],"doi":"10.3321/j.issn:0412-1961.2003.06.014","fpage":"623","id":"2c5fb5b4-d739-46cd-8b7c-d0f905569cc4","issue":"6","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"be2fe2d3-1e95-4459-9f20-2a740e1bde00","keyword":"凝","originalKeyword":"凝"},{"id":"879609d1-98e3-4af1-8c18-1f266b302c1d","keyword":"固传输,结晶潜热,温度补偿法,数值模拟","originalKeyword":"固传输,结晶潜热,温度补偿法,数值模拟"}],"language":"zh","publisherId":"jsxb200306014","title":"采用温度回升法对任意结晶区间的铸件凝固结晶潜热的数值计算","volume":"39","year":"2003"},{"abstractinfo":"本文定义了新的用于推算混合制冷工质蒸发潜热的对比法则,发现了混合制冷工质蒸发潜热与其纯组分蒸发潜热的无量纲关系有同一化规律;另外,本文还寻找到利用纯组分的特征蒸发潜热拟合混合制冷工质特征蒸发潜热的关系式,以及使用个别数据点标定特征蒸发潜热的方法,进而给出了利用纯工质蒸发潜热计算混合制冷工质蒸发潜热的方程;本文比较了文献中5种二元和三元混合制冷工质的推算值与文献值,平均绝对偏差小于1.5%,精度满足工程应用需要.","authors":[{"authorName":"陈建新","id":"f50f8415-603a-46e4-b51e-c609e35fac09","originalAuthorName":"陈建新"},{"authorName":"陈则韶","id":"8580f778-fe4e-40af-9d41-eedd69199d13","originalAuthorName":"陈则韶"},{"authorName":"胡芃","id":"8c3e5f12-84d4-40d4-a128-828e3b4f5d1b","originalAuthorName":"胡芃"}],"doi":"","fpage":"379","id":"4492ef43-70d1-4049-896e-492ec5c4c7a0","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"f80b9efc-b6f6-4c9c-8121-e3ba8229241b","keyword":"混合制冷工质","originalKeyword":"混合制冷工质"},{"id":"fb580e6a-6572-4bc8-bbac-9f72b68424db","keyword":"推算","originalKeyword":"推算"},{"id":"a0432a90-2744-4227-ae53-3987641f5835","keyword":"对比态","originalKeyword":"对比态"},{"id":"916ff040-eb20-46b1-9568-3b1e43cab045","keyword":"蒸发潜热","originalKeyword":"蒸发潜热"}],"language":"zh","publisherId":"gcrwlxb200703006","title":"混合制冷工质蒸发潜热的推算研究","volume":"28","year":"2007"},{"abstractinfo":"潜热型功能热流体是一种集储热与强化传热功能于一体的新型工质.简要介绍了潜热型功能热流体的类型及其研究进展,综述了潜热型功能流体的性能,着重分析了构成悬乳液的相变微胶囊的性能.相变材料的加入能明显强化流体的传热性能,增加热能储存密度和比热容,因而可减少工质流量.相变乳液主要存在粘度大、流动阻力增加等不足,而纳米相变微胶囊悬浮液则可克服上述缺陷.","authors":[{"authorName":"方玉堂","id":"c4fef857-1193-4486-929c-27d58b071045","originalAuthorName":"方玉堂"},{"authorName":"万伟军","id":"3267da98-ba0d-4cbc-b840-8304af1e5c9e","originalAuthorName":"万伟军"}],"doi":"","fpage":"108","id":"fa71d57a-14b0-4c42-8ea4-ad91e38579bc","issue":"15","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"65d3363d-11b3-4d04-9f17-7e567af4d27d","keyword":"相变材料","originalKeyword":"相变材料"},{"id":"c59e400b-1f5a-4e7f-a01c-0b17d8116678","keyword":"功能热流体","originalKeyword":"功能热流体"},{"id":"7aff29d4-6a55-46de-9ff2-365e08d68abc","keyword":"微胶囊","originalKeyword":"微胶囊"},{"id":"61fdcb99-e9c3-4e37-a194-0cd379176de7","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"cldb200915024","title":"潜热型功能热流体的研究进展","volume":"23","year":"2009"},{"abstractinfo":"本文建立了分析带有相变微胶囊的潜热型热功能流体的流动和换热过程数理模型,应用有限差分法和移动热源法进行联合求解.计算结果表明,相变微胶囊的加入,较好地提高了流体的换热性能.获得了相变颗粒大小和体积分数对强化换热影响等结果.计算结果对该类流体的设计和应用提供了理论依据.","authors":[{"authorName":"白凤武","id":"a668c00b-af7b-47e0-84cc-3fa61d9824ee","originalAuthorName":"白凤武"},{"authorName":"卢文强","id":"2f4b678d-3920-465b-a311-6206b630ea8e","originalAuthorName":"卢文强"}],"doi":"","fpage":"445","id":"03f18f19-0193-4a86-bd8c-fc619e13d658","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"baab2b02-7baf-4953-89e4-e6a5a58e5287","keyword":"潜热型热功能流体","originalKeyword":"潜热型热功能流体"},{"id":"c700f4fc-e225-4e7a-a3e6-cde96b273dfa","keyword":"有限差分法","originalKeyword":"有限差分法"},{"id":"d14df705-19db-49de-8800-acbb0d60e43f","keyword":"移动热源法","originalKeyword":"移动热源法"}],"language":"zh","publisherId":"gcrwlxb200303024","title":"潜热型热功能流体强化换热分析","volume":"24","year":"2003"},{"abstractinfo":"为“设计”金属相变材料(PCM),建立了低熔点合金的熔点和相变潜热的计算模型.通过分析二元共晶合金相变中熵及焓等状态量的变化特点,推导出熔点和相变潜热预测模型,并将预测模型向多元合金进行了推广.利用预测模型计算得到15种低熔点合金的熔点和相变潜热的计算值,通过与DSC的测试结果进行比较并且对误差进行分析发现:熔点和相变潜热的计算值与测量值具有较好的一致性.并且得出一个配制金属相变材料的原则:若想得到相交潜热较高的合金,则应该选取相交潜热高的元素作为合金组元,并且提高该元素的含量.该预测模型的优点是仅用合金元素本身的物理参数即可较准确地预测合金的熔点和相变潜热,从而避免了大量的实验.","authors":[{"authorName":"潘艾刚","id":"72a075f5-9731-4ca6-96c8-3b6f66ae9be7","originalAuthorName":"潘艾刚"},{"authorName":"王俊彪","id":"7fbe04ff-d7a7-4d02-89d4-cac0af4154a5","originalAuthorName":"王俊彪"},{"authorName":"张贤杰","id":"7066cf5b-254e-4caf-975f-d06b8cbc1792","originalAuthorName":"张贤杰"}],"doi":"","fpage":"874","id":"46af2b4c-38d2-4bd7-8d3a-4f6977e8dba3","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"3f91967e-780b-4651-a49a-c6b94eafc6e2","keyword":"低熔点合金","originalKeyword":"低熔点合金"},{"id":"d425cc76-58a5-440c-b2de-2c5e0caa41a1","keyword":"相变材料","originalKeyword":"相变材料"},{"id":"74929c42-c5aa-44f8-93f9-1f3515e6863d","keyword":"熔点","originalKeyword":"熔点"},{"id":"a024a887-2230-478a-bee7-93a5c8d2aa2e","keyword":"相变潜热","originalKeyword":"相变潜热"}],"language":"zh","publisherId":"xyjsclygc201604010","title":"低熔点金属相变材料的熔点和相变潜热的理论预测","volume":"45","year":"2016"},{"abstractinfo":"针对太阳能利用、余热利用、集中供暖等应用背景,采用差示扫描量热法(DSC)遴选了一种相变温度合适(相变峰值87℃)、相变潜热值较大(203.9J/g)的工业石蜡,并以此为相变材料,采用非离子型乳化剂及助乳剂复配的方法研制了3种浓度的石蜡乳状液高温潜热输送材料。测定了石蜡乳状液高温潜热输送材料的相变点、相变潜热等热物性,并研究了其蓄热特性。结果表明,该材料是一种在80~90℃之间存在相变的储、传热工质,在相变区间内的储、载热密度远大于水,是一种良好的潜热输送材料。","authors":[{"authorName":"邹得球","id":"f4c6ed0e-58d5-4f76-8e9a-f381974b2de7","originalAuthorName":"邹得球"},{"authorName":"肖睿","id":"6c550e81-7583-49fa-b732-d0fd96673dfa","originalAuthorName":"肖睿"},{"authorName":"冯自平","id":"10e6db5d-59f3-4684-a64e-f853b63ac310","originalAuthorName":"冯自平"},{"authorName":"郭江荣","id":"593b33ff-80bb-4a62-ac14-dda96207e5fc","originalAuthorName":"郭江荣"}],"doi":"","fpage":"84","id":"cb3513ce-d77d-4621-b222-75336e72772f","issue":"1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"2758bb0a-0fd3-4460-ac2b-2e3d2f60a08f","keyword":"石蜡乳状液","originalKeyword":"石蜡乳状液"},{"id":"d387f37a-04de-4a56-a818-440d380a7e7f","keyword":"潜热输送","originalKeyword":"潜热输送"},{"id":"9fda294b-6d4e-4a93-a832-776908c948ce","keyword":"热性能","originalKeyword":"热性能"}],"language":"zh","publisherId":"gncl201201023","title":"一种适合潜热输送的高温相变石蜡乳状液的热性能","volume":"43","year":"2012"},{"abstractinfo":"通过DSC对TiNi和TiNiCu记忆合金丝/镍基机敏复合材料的相变潜热进行了研究.结果表明,预应变TiNi试样在无约束状态下的第一次马氏体逆相变过程中,相变潜热值随预应变水平的增加而迅速增大,而在镍基体约束下,相变潜热值随预应变水平的增加而迅速减小.但TiNiCu和TiNiCu丝/镍基复合材料的相变潜热变化趋势与TiNi试样的明显不同.对上述现象给出了合理的解释.","authors":[{"authorName":"李君涛","id":"ec4e5220-243a-4716-b8d7-4dd09337a194","originalAuthorName":"李君涛"},{"authorName":"扈玉玲","id":"3114175d-4efc-4c62-a7aa-578a89e13979","originalAuthorName":"扈玉玲"},{"authorName":"缪卫东","id":"264ee67a-dc24-4f4e-83ed-0181ff0e01b6","originalAuthorName":"缪卫东"},{"authorName":"郑雁军","id":"a5863be1-68bf-465a-866c-8f3c49cb8fe3","originalAuthorName":"郑雁军"},{"authorName":"崔立山","id":"9f50089f-4991-4c2b-8976-51985035b360","originalAuthorName":"崔立山"}],"doi":"","fpage":"25","id":"c6d72588-f1e2-45c2-b37b-179f69c32518","issue":"16","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"df72e145-8e5b-4850-a9e0-c057f8e5be30","keyword":"形状记忆合金","originalKeyword":"形状记忆合金"},{"id":"a344e6e7-c478-4a65-ab43-2bf91a982f03","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"3d2db5b6-84ba-468d-80d8-e4e07a2fbe21","keyword":"转变热","originalKeyword":"转变热"},{"id":"5d4d981f-0dae-49de-9026-343104e62bba","keyword":"示差扫描量热法","originalKeyword":"示差扫描量热法"}],"language":"zh","publisherId":"cldb200916008","title":"TiNi和TiNiCu记忆合金丝/镍基机敏复合材料相变潜热研究","volume":"23","year":"2009"},{"abstractinfo":"本文采用示差扫描量热仪(DSC)系统分析了Ti50Ni40Cu10(at.%)合金的马氏体相变潜热(ΔHB2→B19)和逆马氏体相变潜热(ΔHB19→B2)、相变热滞(ΔT)与固溶温度、退火温度和相变热循环间的关系.结果表明:相变潜热随着固溶化温度的升高而明显降低、随着退火温度的升高则略微降低.相变热滞、逆马氏体相变温度在热循环初期迅速降低,当热循环次数超过2次时则均保持不变;逆马氏体相变潜热(ΔHB19→B2和ΔHB19→B19)随着热循环次数(n<4)的增加有所升高,特别是ΔHB19→B19约增加58%,而热循环次数对马氏体相变温度和潜热ΔHB2→B19则无明显影响.","authors":[{"authorName":"骆苏华","id":"c3ee303c-a330-4035-a10e-3f4c053b3bbe","originalAuthorName":"骆苏华"},{"authorName":"李亚东","id":"82cd4afd-3b96-4322-a1f4-5c89d062a725","originalAuthorName":"李亚东"}],"doi":"10.3969/j.issn.1673-2812.2003.01.023","fpage":"83","id":"a1dc025e-6ac6-4e20-b41b-ba777473e92c","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"5af75122-edbb-4da7-b4c3-2bf97ee405ba","keyword":"Ti50Ni40Cu10","originalKeyword":"Ti50Ni40Cu10"},{"id":"2bf391ad-1066-4a6a-a464-5379d1d9c0fc","keyword":"相变潜热","originalKeyword":"相变潜热"},{"id":"5eaebb64-866c-4b84-80d1-a4b35b2e5d1e","keyword":"相变热滞","originalKeyword":"相变热滞"},{"id":"bf302a6e-6df0-4b38-bf42-743a6093722a","keyword":"热处理工艺","originalKeyword":"热处理工艺"},{"id":"211cfabc-7b3e-4e4e-9a12-f991ad8937f7","keyword":"相变热循环","originalKeyword":"相变热循环"}],"language":"zh","publisherId":"clkxygc200301023","title":"Ti50Ni40Cu10合金的相变潜热及相变热滞","volume":"21","year":"2003"}],"totalpage":1131,"totalrecord":11309}