{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"","authors":[{"authorName":"徐丽","id":"805340f7-4ddb-4e02-9a6d-96489fe7b568","originalAuthorName":"徐丽"},{"authorName":"陈跃良","id":"2e80d5ca-254b-405a-a92a-516fd21f1bf2","originalAuthorName":"陈跃良"},{"authorName":"","id":"2038f588-0a42-41de-aec5-d0e7860d99e6","originalAuthorName":"卞贵学"},{"authorName":"刘旭","id":"a0faae4e-b6ab-47a5-b844-cb2ebc6b473d","originalAuthorName":"刘旭"}],"categoryName":"|","doi":"","fpage":"256","id":"415119d7-3cbe-4743-be5d-81205a0d7790","issue":"3","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[],"language":"zh","publisherId":"1002-6495_2012_3_12","title":"铝合金微动腐蚀损伤机制及防护措施","volume":"24","year":"2012"},{"abstractinfo":"分析了导致海军飞机结构腐蚀的主要因素,基于飞机地面停放环境谱,对航空LY12CZ铝合金件进行了多个当量年限的加速腐蚀试验和热带海洋环境下的暴露试验;对试件表面涂层、金属基体材料腐蚀情况进行观察和测量;根据腐蚀评价指标对试验件腐蚀状况进行了分析比较。结果表明,实验室加速腐蚀结果符合飞机外场服役的腐蚀特征,而材料直接暴露在海洋环境中比外场腐蚀速度更快。对腐蚀深度和腐蚀失重进行测量,给出腐蚀深度的分布特性和加速腐蚀与自然暴露的当量关系,对失重规律进行了研究。","authors":[{"authorName":"胡建军","id":"9528c589-51c1-44f7-9139-b26cbb099e6f","originalAuthorName":"胡建军"},{"authorName":"陈跃良","id":"faa7469a-dde0-4972-8fb3-896980a49478","originalAuthorName":"陈跃良"},{"authorName":"","id":"c3d4b5bd-1b11-46b4-9ab3-716626506b79","originalAuthorName":"卞贵学"},{"authorName":"张勇","id":"1c68f5d8-618d-416f-bc0d-27f64348cec4","originalAuthorName":"张勇"},{"authorName":"衣林","id":"94dad186-854f-4782-869c-ba1dc4179035","originalAuthorName":"衣林"}],"doi":"","fpage":"900","id":"47d45a9f-4c64-4843-8bc9-9a09f48987e3","issue":"11","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"03736d1d-ad92-4782-8665-5fcde02a7dec","keyword":"LY12CZ铝合金.力口速腐蚀试验","originalKeyword":"LY12CZ铝合金.力口速腐蚀试验"},{"id":"a9cc0278-84df-4a95-bf5d-09fe2dd8fb65","keyword":"腐蚀当量关系","originalKeyword":"腐蚀当量关系"},{"id":"f56760f6-9bb5-4a58-b71a-17b7d00462d7","keyword":"飞机结构","originalKeyword":"飞机结构"}],"language":"zh","publisherId":"fsyfh201111014","title":"飞机结构加速腐蚀与自然腐蚀","volume":"32","year":"2011"},{"abstractinfo":"模拟飞机服役环境,对未涂抹及涂抹缓蚀剂的航空LY12铝合金搭接试验件进行了腐蚀试验和疲劳试验.通过对试验件分解检查,分析了腐蚀环境对涂抹缓蚀剂航空LY12铝合金典型螺栓搭接件的影响.对缓蚀剂对搭接件的疲劳性能的影响进行了统计和分析.结果表明,相同腐蚀时间,未涂抹缓蚀剂试验件的螺栓孔附近和搭接面腐蚀程度较涂抹缓蚀剂试验件严重,缓蚀剂可有效减缓腐蚀,且不同的缓蚀剂类型对腐蚀的减缓程度不同.一般环境下,涂抹缓蚀剂的试验件比未涂抹缓蚀剂试验件的疲劳寿命有所减少,应力水平越小影响程度越明显;腐蚀40 d后,涂抹缓蚀剂的试验件较未涂抹缓蚀剂的试验件寿命育所增加,且不同应力水平和缓蚀剂类型对疲劳寿命的影响程度不同.","authors":[{"authorName":"张勇","id":"120e51c7-8512-4152-89ca-4119b2f2ba5e","originalAuthorName":"张勇"},{"authorName":"","id":"9c86bb99-7962-4e69-9ca3-d681f1fe1cfc","originalAuthorName":"卞贵学"},{"authorName":"陈跃良","id":"10ab957a-d4cf-4cf0-bc1c-6749aa3fe13d","originalAuthorName":"陈跃良"},{"authorName":"张泰峰","id":"9a768038-9868-42f5-ae77-2de56e47f53e","originalAuthorName":"张泰峰"}],"doi":"","fpage":"679","id":"9021d703-c374-4334-a091-561a37259f9f","issue":"8","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"b30437f3-bbb9-4af0-8b40-cde7979facaa","keyword":"缓蚀剂","originalKeyword":"缓蚀剂"},{"id":"2e1bfad3-0549-41ac-80cb-6f14d532bd00","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"b4a0c06a-72b8-4742-aabe-508489c07617","keyword":"腐蚀损伤","originalKeyword":"腐蚀损伤"},{"id":"ce03ea4b-991b-4c69-8512-76231b8b70cc","keyword":"搭接件","originalKeyword":"搭接件"},{"id":"083714b3-000d-4e51-8320-356fd97ca863","keyword":"疲劳","originalKeyword":"疲劳"}],"language":"zh","publisherId":"fsyfh201308007","title":"缓蚀剂对LY12铝合金搭接件疲劳寿命的影响","volume":"34","year":"2013"},{"abstractinfo":"根据减速器机匣疲劳损伤应力循环的动、静应力包罗线方法确定了疲劳试验加载方案;根据设计载荷谱或飞行实测,确定各载荷作用点的状态载荷并编制了疲劳试验谱;根据减速器机匣的受力形式,完成减速器机匣疲劳试验装置的设计.结果表明,该试验装置既可以考虑高频动载荷的影响,又能简化疲劳试验的加载程序,明显缩短了疲劳试验的周期.","authors":[{"authorName":"张勇","id":"24a066c9-46c5-44fa-934b-dcf94a5e5a80","originalAuthorName":"张勇"},{"authorName":"","id":"c9df4891-b2de-4338-a611-08b66dbde8ec","originalAuthorName":"卞贵学"},{"authorName":"陈跃良","id":"c88d6295-c239-46fa-8b52-9efb9bdc54a1","originalAuthorName":"陈跃良"},{"authorName":"王安东","id":"2d38abd3-e7e6-4b95-a145-6a1c5df2d9b1","originalAuthorName":"王安东"},{"authorName":"樊伟杰","id":"6be7f076-2a4e-483f-8e48-18116f699b20","originalAuthorName":"樊伟杰"}],"doi":"","fpage":"22","id":"02506c7a-7d9d-41a9-b144-a2c0830e7312","issue":"6","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"8cb33f58-42ef-4dca-92b7-c11a9b59f94b","keyword":"载荷谱","originalKeyword":"载荷谱"},{"id":"4e3f274c-c897-4c10-ab44-cf5d4dd0e7bf","keyword":"疲劳寿命","originalKeyword":"疲劳寿命"},{"id":"50cc6792-e9e2-4380-91d9-e0b0430adcff","keyword":"任务剖面","originalKeyword":"任务剖面"},{"id":"ea1f2b57-c9dc-445a-89b0-55a5b244fb42","keyword":"试验谱","originalKeyword":"试验谱"}],"language":"zh","publisherId":"clkfyyy201606005","title":"直升机尾减速器机匣疲劳试验方法研究","volume":"31","year":"2016"},{"abstractinfo":"海洋大气环境下铝合金的腐蚀本质上是薄液膜下的电化学腐蚀,与本体溶液中的腐蚀有很大不同,腐蚀速率与薄液膜的厚度及成分有关。建立并实验验证了薄液膜厚度、大气相对湿度和铝合金表面盐沉积量3者之间的关系,研究7B04铝合金在不同厚度和不同NaCl浓度薄液膜下的电化学性能。结果表明,薄液膜下7B04铝合金的自然腐蚀电位较本体溶液中更容易达到稳定,且电位更正,自然腐蚀速率更大;液膜厚度减小,7B04铝合金阴极极化电流密度增加,阳极反应受到抑制;薄液膜中NaCl浓度升高,7B04铝合金的自然腐蚀电位降低,腐蚀速率上升,而阴阳极极化过程受NaCl浓度变化影响不大,当NaCl质量分数达到5%后,自然腐蚀电位基本不再变化。","authors":[{"authorName":"王晨光","id":"6e1128be-dc2a-40d5-ba04-16c3df021602","originalAuthorName":"王晨光"},{"authorName":"陈跃良","id":"dd618f9b-28bc-44b4-b794-1e6fd6f4262b","originalAuthorName":"陈跃良"},{"authorName":"张勇","id":"027ae1a2-d8fb-4301-afe0-ab7f913f7b16","originalAuthorName":"张勇"},{"authorName":"","id":"0c0e36ec-fb0c-46c7-baaa-5bbde055d61d","originalAuthorName":"卞贵学"}],"doi":"10.11868/j.issn.1005-5053.2016.000120","fpage":"59","id":"7e21cbad-051d-4f9c-87ee-b351a964dfa9","issue":"1","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"5c7c7f30-d44a-4c4c-a9cc-39814d5aa48e","keyword":"7B04铝合金","originalKeyword":"7B04铝合金"},{"id":"a4ca3367-741b-47cf-832d-1062c929eac6","keyword":"大气腐蚀","originalKeyword":"大气腐蚀"},{"id":"b87f7345-839e-4c14-bae5-11bea9499d92","keyword":"薄液膜","originalKeyword":"薄液膜"},{"id":"8159b873-9340-46b2-81bf-307bed851635","keyword":"盐沉积量","originalKeyword":"盐沉积量"},{"id":"12bca844-5c47-4e72-8f9a-3c8fbd694916","keyword":"相对湿度","originalKeyword":"相对湿度"}],"language":"zh","publisherId":"hkclxb201701006","title":"7 B04铝合金在模拟海洋大气环境下的腐蚀行为","volume":"37","year":"2017"},{"abstractinfo":"模拟7B04铝合金表面涂层破损,采用电化学试验研究7B04铝合金在不同环境条件下的自腐蚀与点蚀行为,基于电偶腐蚀数学模型,通过有限元法分析7B04铝合金与TA15钛合金接触后发生点蚀的条件。结果表明:7B04铝合金点蚀电位受Cl-浓度和pH值的影响,在NaCl质量分数>10%的中性溶液及NaCl质量分数为3.5%的酸性溶液中,自腐蚀状态下7B04铝合金即可发生点蚀;7B04铝合金与TA15钛合金接触后,电位升高,增加了发生点蚀的可能性,在NaCl质量分数为3.5%的中性溶液中,当阴阳极面积比≥40时,7B04铝合金发生点蚀的萌生并进一步扩展;7B04铝合金电位随阴阳极距离的增大而下降,但幅度有限,在10 m的距离内下降不超过2 mV。","authors":[{"authorName":"王晨光","id":"aed3b8ed-c3da-47a5-b0b4-4483a1f624f2","originalAuthorName":"王晨光"},{"authorName":"陈跃良","id":"5caf47b7-ddbb-42a9-b59d-06ef39d5b407","originalAuthorName":"陈跃良"},{"authorName":"张勇","id":"3cf23d73-76b0-447a-8acf-b06559475c62","originalAuthorName":"张勇"},{"authorName":"","id":"0eb7f066-e06a-4987-a5f9-0a54ad35ce5d","originalAuthorName":"卞贵学"}],"doi":"10.11868/j.issn.1005-5053.2016.6.008","fpage":"48","id":"273b06a7-a1c3-4958-847b-b8ddf6261405","issue":"6","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"389b4c9a-61fc-44fb-be57-d3c3695854e5","keyword":"7B04铝合金","originalKeyword":"7B04铝合金"},{"id":"0af8cfe1-4799-4898-b06f-fbd6ebe7153a","keyword":"点蚀","originalKeyword":"点蚀"},{"id":"b4acf46e-2524-4fc6-9c75-e2f6287d0bd3","keyword":"涂层破损","originalKeyword":"涂层破损"},{"id":"c63f47a4-3412-4e40-a39a-6a4b034a2c71","keyword":"数值计算","originalKeyword":"数值计算"},{"id":"5849eb4e-8e21-4110-abfb-bb0d57144331","keyword":"电偶腐蚀","originalKeyword":"电偶腐蚀"}],"language":"zh","publisherId":"hkclxb201606008","title":"表面涂层破损对7 B04铝合金点蚀的影响及仿真研究","volume":"36","year":"2016"},{"abstractinfo":"从理论上分析了采用真空蒸馏法分离铅中铅、银、铜、铋、锑的可行性,研究了蒸馏时间、蒸馏温度对铅中金属分离效果的影响规律。实验结果表明,当系统压力在10~20 Pa,温度在800℃以上,保温时间≥2 h时,铅和铋的挥发率接近100%,银和锑的挥发率随温度的升高、保温时间的增长而逐渐增大。当温度为850℃,保温时间为2 h时,所得残留物中铅、银、铜、铋、锑的含量分别为0.21%、45.31%、13.24%、0.0001%、33.6%,挥发物中铅、银、铜、铋、锑的含量分别为46.15%、0.236%、0.022%、8.87%、35.4%。","authors":[{"authorName":"包崇军","id":"892754f3-82fd-4d26-8b2a-7a985d5be010","originalAuthorName":"包崇军"},{"authorName":"蒋文龙","id":"ee09dad7-109d-407f-ad7c-5cc4de1efe34","originalAuthorName":"蒋文龙"},{"authorName":"李晓阳","id":"b6dfdb2f-f43d-42f2-b146-94ad2c089d63","originalAuthorName":"李晓阳"},{"authorName":"吴红林","id":"3dd5453d-7baa-4ee2-b02f-1c00703c8d91","originalAuthorName":"吴红林"},{"authorName":"邹利明","id":"14252ee7-e2ee-4b12-bd47-b0bb974eabe3","originalAuthorName":"邹利明"},{"authorName":"罗凌艳","id":"d4dadb7b-ba4a-4489-afbd-dfdf5ada3e4b","originalAuthorName":"罗凌艳"},{"authorName":"柯浪","id":"1ed7aced-dded-4cd8-9b24-2ef93472f036","originalAuthorName":"柯浪"},{"authorName":"许娜","id":"2ecfc2ad-da25-4c8f-ab3e-bea9cea9b8fa","originalAuthorName":"许娜"},{"authorName":"田林","id":"7dd6811d-a25d-4985-9dcc-e24c9eab878f","originalAuthorName":"田林"}],"doi":"","fpage":"31","id":"8d276d92-5362-4625-b264-5da4f70330d8","issue":"z1","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"b67ae8fb-8a6e-499c-b899-bb81257fef54","keyword":"有色金属冶金","originalKeyword":"有色金属冶金"},{"id":"37726ddb-e999-45ef-a001-03fcbb31aedb","keyword":"真空蒸馏法","originalKeyword":"真空蒸馏法"},{"id":"f68cb13c-d6df-45ec-bb8f-cc9af58293cd","keyword":"铅","originalKeyword":"贵铅"},{"id":"3bf693ce-1bb1-4d15-a3c2-4c3b39b2b500","keyword":"金属分离","originalKeyword":"金属分离"}],"language":"zh","publisherId":"gjs2014z1008","title":"真空蒸馏法处理铅新工艺研究","volume":"","year":"2014"},{"abstractinfo":"目前,氰化浸金仍是从矿石中提取金最主要方法.从氰化浸出液(矿浆)中回收金在工业生产中应用的方法主要有锌粉置换法、活性炭吸附法、离子交换树脂吸附法、电沉积法等,而溶剂萃取法、液膜法等尚在试验研究中.文中叙述了从氰化液中(矿浆)回收金的各种方法的发展、机理、优缺点及行业应用和研究现状,并对回收方法的选择进行了分析讨论.","authors":[{"authorName":"陈淑萍","id":"f0bab11d-6da1-4cf4-a1a8-da8181289e57","originalAuthorName":"陈淑萍"}],"doi":"10.3969/j.issn.1001-1277.2012.02.011","fpage":"43","id":"af133372-dfec-47b8-a2b8-cd4d14b0a30a","issue":"2","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"d66a50a9-e205-437e-a61e-f77a1a393fb6","keyword":"氰化液","originalKeyword":"氰化贵液"},{"id":"8bc659fc-aef0-4545-a37b-edf158513fa8","keyword":"锌粉置换","originalKeyword":"锌粉置换"},{"id":"13b51b0b-0f28-4b3a-b457-22f155cb8e0c","keyword":"吸附","originalKeyword":"吸附"},{"id":"96ffb9b7-eda7-4432-877d-7d5e97932077","keyword":"回收金","originalKeyword":"回收金"}],"language":"zh","publisherId":"huangj201202011","title":"从氰化液(矿浆)中回收金技术进展","volume":"33","year":"2012"},{"abstractinfo":"提出了一个实用而简便的测定液中金和钯的方法.在瓷坩埚中蒸干液,残渣与混合试剂熔炼,灰吹,贵金属合粒用酸溶解,原子吸收法测定金和钯.该方法准确,适用范围广.","authors":[{"authorName":"林海山","id":"018ae545-a511-4550-80be-4839cc21187a","originalAuthorName":"林海山"}],"doi":"10.3969/j.issn.1001-1277.2002.05.014","fpage":"44","id":"acfc0866-2e86-44d3-80c5-6c8b2f050987","issue":"5","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"84a060b4-6883-4de1-a3cc-e03de16d5175","keyword":"简易试金","originalKeyword":"简易试金"},{"id":"9d57c679-96fe-4c8e-b676-6fe541de8136","keyword":"液","originalKeyword":"贵液"},{"id":"5ff6e6db-3dfd-4d22-b3d9-032c8cbf54a6","keyword":"金","originalKeyword":"金"},{"id":"5ac2cb9d-e763-4695-90c1-c27d3bbf9519","keyword":"钯","originalKeyword":"钯"}],"language":"zh","publisherId":"huangj200205014","title":"简易试金法测定液中的金和钯","volume":"23","year":"2002"},{"abstractinfo":"高铅金银矿粉氰化过程产生的高铅液,进一步采用锌粉置换时其中溶解的铅易被置换出来,从而使银泥品位大幅下降,且会对后续的冶炼作业带来困难。为解决液中高含量铅造成的影响,进行了降铅试验研究。其结果表明:通过控制浸出工艺碱度,液二次置换、Na2 CO3预先除铅,均可有效解决液中铅含量过高而对生产造成的影响。","authors":[{"authorName":"王文强","id":"2814c8ae-d491-48e5-bf2f-6160fb4a13a2","originalAuthorName":"王文强"},{"authorName":"王金超","id":"4a899c1d-e13f-437f-9aee-e4b5919b2634","originalAuthorName":"王金超"},{"authorName":"姜传进","id":"3755613f-e2e3-4fa6-9702-4d20fc1f5111","originalAuthorName":"姜传进"}],"doi":"10.11792/hj20160314","fpage":"64","id":"20d7db5b-6494-48b4-a5aa-3e0cc1d8e30c","issue":"3","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"7b55b97b-e6ad-49a6-af9c-1e3abd23dc53","keyword":"高铅液","originalKeyword":"高铅贵液"},{"id":"962d0e7a-6972-42aa-85fb-3178fcc59e02","keyword":"Na2 CO3除铅","originalKeyword":"Na2 CO3除铅"},{"id":"4f622fb3-e982-4bf2-9243-9bf42cb74f6c","keyword":"锌粉置换","originalKeyword":"锌粉置换"},{"id":"983efbd2-48a4-4dec-a81f-c9067f85d50d","keyword":"氰化","originalKeyword":"氰化"}],"language":"zh","publisherId":"huangj201603015","title":"金银氰化浸出中高铅液的产生原因及处理方法","volume":"37","year":"2016"}],"totalpage":291,"totalrecord":2910}