{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"区分氧化钙脱硫反应中的化学反应动力学速率与二氧化硫、氧气分子的扩散速率是一个难题.通过系列样品的TGA实验,在简化假设的基础上找到了CaO颗粒脱硫反应中的化学反应动力学速率与二氧化硫、氧气分子的扩散速率的变化规律.实验结果表明:化学反应速率和二氧化硫、氧气分子的扩散速率随着反应温度的上升、脱硫剂颗粒粒径的降低和氧化钙纯度的提高而提高.适当提高脱硫反应温度、最大限度地降低颗粒粒径是提高氧化钙脱硫反应速率的主要措施.","authors":[{"authorName":"王世昌","id":"692ec088-9ed6-459d-87aa-b5bd6b8ff4b4","originalAuthorName":"王世昌"},{"authorName":"姚强","id":"442d1d51-7f20-4460-b43f-3137b91949ea","originalAuthorName":"姚强"},{"authorName":"徐旭常","id":"ca776d7d-10a3-476e-9c97-1404960e7a97","originalAuthorName":"徐旭常"}],"doi":"","fpage":"219","id":"4343a4f4-dde9-49c0-bc14-6d8d5615128c","issue":"z2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"dc82eebf-5659-40f1-8562-57e8549ef967","keyword":"干法烟气脱硫","originalKeyword":"干法烟气脱硫"},{"id":"2d04ce6f-7531-4338-b9fb-7b7b5d2b1fd2","keyword":"氧化钙颗粒","originalKeyword":"氧化钙颗粒"},{"id":"4e8460fc-d0a0-4fb5-b24c-1b12e4103f1a","keyword":"化学反应动力学速率","originalKeyword":"化学反应动力学速率"},{"id":"18798dd0-ec52-4781-b5b4-76881dfefc54","keyword":"扩散速率","originalKeyword":"扩散速率"}],"language":"zh","publisherId":"gcrwlxb2006z2057","title":"CaO脱硫化学反应速率与气体扩散速率对比","volume":"27","year":"2006"},{"abstractinfo":"转炉冶炼脱磷期间渣中含有一定量的固态CaO颗粒,为研究磷在CaO颗粒中的传递速度,在1385~1450℃,CaO饱和的CaO-SiO2-FetO-P2O5熔渣中用钼丝吊入CaO颗粒,分别保温10、20、30、60、100 s,之后取出空冷,采用SEM-EDS测量非均相脱磷渣中磷在CaO颗粒和渣间的分配并计算扩散系数,研究了温度对磷在CaO固相颗粒中的扩散速度的影响.结果表明,在试验温度下磷能够扩散进入CaO固体颗粒中,但由于CaO颗粒与渣中物质作用,磷的进一步扩散变得困难.1400℃下磷在CaO颗粒中的扩散速率常数DP为9.536× 10-10 m2/s;1385、1450℃时,DP分别为5.75749×10-10、7.42× 10-9m2/s.在1380~1450℃,CaO-SiO2-FetO-P2O5熔渣中磷在CaO颗粒中的扩散活化能为9.638× 105 J/mol.","authors":[{"authorName":"彭军","id":"9bfc5758-de8a-4104-9551-0279a98b4643","originalAuthorName":"彭军"},{"authorName":"刘爽","id":"5a7db79c-d99a-4f7f-bf5d-e4be404518ba","originalAuthorName":"刘爽"},{"authorName":"刘丽霞","id":"9009f98f-2147-4a11-b086-b0bffb0341b5","originalAuthorName":"刘丽霞"},{"authorName":"郭永","id":"49e5dc24-016b-4586-9853-e553b27ec8f6","originalAuthorName":"郭永"},{"authorName":"安胜利","id":"625de045-00f9-4be2-9568-c041c8a8d99d","originalAuthorName":"安胜利"}],"doi":"10.7513/j.issn.1004-7638.2016.03.021","fpage":"108","id":"116c529c-abde-4e86-8ad2-7eb89dbdef9f","issue":"3","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"0e38c14f-e145-4384-8ba4-fbe0c9677c4d","keyword":"转炉","originalKeyword":"转炉"},{"id":"0fb857bc-a0f0-4739-8889-585a3e7d2892","keyword":"高磷铁水","originalKeyword":"高磷铁水"},{"id":"8906e9a0-de15-43a8-b5ae-78f67b679fb5","keyword":"脱磷","originalKeyword":"脱磷"},{"id":"ee5d0186-5a0b-4660-bb2c-17a0b3d4bbda","keyword":"CaO固相颗粒","originalKeyword":"CaO固相颗粒"},{"id":"ec8391c4-c630-47d1-82cf-5bc076a268cf","keyword":"扩散速率","originalKeyword":"扩散速率"}],"language":"zh","publisherId":"gtft201603021","title":"脱磷渣中磷在CaO固相颗粒中扩散速率研究","volume":"37","year":"2016"},{"abstractinfo":"采用复合浇铸+热塑性成形工艺制备出硼含量不同的热中子屏蔽材料不锈钢复合板.复合浇铸过程中芯层与覆层界面处的间隙通过大变形量的热轧变形完全可以实现冶金结合.研究表明:复合板经1150℃,2、4、6h的扩散退火,扩散处理过程中硼原子在界面附近的扩散速率很低,扩散速率随着中间层硼含量的增加而变化程度不大.随着保温时间延长,硼原子的扩散距离也在增加,但其扩散速率是逐渐降低的.硼化物的半径随着保温时间延长而增加,但随时间不断延长,增长速率逐渐变慢,在保温过程中基本是稳定存在.因此,从高硼不锈钢复合板高温氧化及节约能源考虑,扩散退火时间控制在2h左右为宜.","authors":[{"authorName":"刘靖","id":"e2e6b11c-7411-4ebd-a75c-de7952dfa74f","originalAuthorName":"刘靖"},{"authorName":"解国良","id":"fd010b40-b1a6-491d-8c1f-8b48bb4fff50","originalAuthorName":"解国良"},{"authorName":"张可","id":"f50a6b43-7e41-46f9-9ddb-e6020f94cc08","originalAuthorName":"张可"},{"authorName":"韩静涛","id":"9f907e55-c9f8-4dfc-ae4a-fe8d5723281f","originalAuthorName":"韩静涛"}],"doi":"","fpage":"90","id":"a2486f53-c3e5-421f-9246-499c14da41d5","issue":"4","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"f7972d98-5c3a-4f2a-ac64-140338d3e916","keyword":"不锈钢/高硼不锈钢复合板","originalKeyword":"不锈钢/高硼不锈钢复合板"},{"id":"349db51d-cfd8-493d-aa86-ae9e7218c76f","keyword":"扩散速率","originalKeyword":"扩散速率"},{"id":"499e0b3d-4eb3-44af-9226-6ab6734c2422","keyword":"界面","originalKeyword":"界面"},{"id":"5c6edc7e-0fc4-4871-9c1c-eec85ef717f3","keyword":"硼化物","originalKeyword":"硼化物"},{"id":"40163e4a-a012-4019-8487-2ee07e9b3104","keyword":"粗化","originalKeyword":"粗化"}],"language":"zh","publisherId":"jsrclxb201304018","title":"扩散退火对热轧高硼不锈钢复合板界面组织的影响","volume":"34","year":"2013"},{"abstractinfo":"根据不同温度下氧分子平均自由程的大小,比较了小孔、中孔和大孔中三种扩散速率与煤焦表面燃烧速度的大小.研究表明:2000 K以内,颗粒表面分子扩散速率比氧化反应速率大1个数量级以上,过度扩散速率不小于氧化速率.温度小于1200K时,燃烧速率比Knudsen扩散速率小1~5个数量级,扩散孔径小于15~28 nm,反应主要在内外表面进行;1200~1600K时,燃烧速率与Knudsen扩散速率相当,扩散临界孔径28~38 nm,反应在外表面及浅层内表面进行;温度1600K以上时,Knudsen扩散速率比燃烧速率小1个数量级,孔径38~50 nm以下内表面上碳的氧化速度受扩散控制.煤焦的氧化主要发生在Knudsen扩散临界孔径10~50 nm以上的氧气可达表面上.","authors":[{"authorName":"傅培舫","id":"679f09e5-4fee-41b1-9433-35df2f3cdd5e","originalAuthorName":"傅培舫"},{"authorName":"方庆艳","id":"c55267f7-dba3-473e-b0ab-8d036807da69","originalAuthorName":"方庆艳"},{"authorName":"周怀春","id":"a343bb34-a7ec-4f88-aeb3-3a066699968d","originalAuthorName":"周怀春"}],"doi":"","fpage":"171","id":"3488e403-c03c-4511-831a-88169ed9c466","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"a6a9134c-8e66-41ff-b541-a9b392dd1399","keyword":"氧气可达比表面积","originalKeyword":"氧气可达比表面积"},{"id":"3dddb80c-5582-4643-8f3f-283b89fc9164","keyword":"煤焦燃烧速率","originalKeyword":"煤焦燃烧速率"},{"id":"5f9d5f76-4d24-4966-a530-eb364ca7a1bc","keyword":"扩散速率","originalKeyword":"扩散速率"},{"id":"e29000c2-c828-4b69-9947-094900edcda4","keyword":"分子平均自由程","originalKeyword":"分子平均自由程"}],"language":"zh","publisherId":"gcrwlxb200601053","title":"基于简单碰撞理论煤粉燃烧动力学模型的研究-PART Ⅲ:氧气可达比表面积","volume":"27","year":"2006"},{"abstractinfo":"采用分子动力学方法研究了锯齿型(2,2)石墨炔-3 (Graphyne-3)纳米管的盐水分离性能.结果表明,不同浓度的氯化钠溶液作为汲取液的体系中,通过管壁的水通量比传统渗透膜的水通量高约4个数量级,均在100 L/(cm2·h)以上,管壁对钠离子和氯离子的截留率均为100%.水分子在该石墨炔管中能够实现非常快速的扩散,其扩散速率比水分子的自由扩散速率高1~2个数量级.钠离子和氯离子在管中距离管壁0.48~0.93 nm的区域分布概率最高.","authors":[{"authorName":"张鑫","id":"a6f9186d-26f4-40e3-b836-fe0f0342f19a","originalAuthorName":"张鑫"},{"authorName":"盖景刚","id":"21098e54-9ada-44c5-9347-b70d4cb30fb9","originalAuthorName":"盖景刚"}],"doi":"10.16865/j.cnki.1000-7555.2016.03.014","fpage":"76","id":"d5d5e1d3-d2f0-4caa-a0b3-b5b45f999ad5","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"c91aed67-2218-4b04-be8b-4300f003eae0","keyword":"分子动力学","originalKeyword":"分子动力学"},{"id":"8a87f09d-abc4-45b3-98bc-5fa13fd69e82","keyword":"石墨炔-3","originalKeyword":"石墨炔-3"},{"id":"fcb2ef5d-5494-47ca-afaa-efa8360a493b","keyword":"水通量","originalKeyword":"水通量"},{"id":"afcc3ee6-e9ac-4fc5-898a-f0605406684b","keyword":"截留率","originalKeyword":"截留率"},{"id":"9e752a67-9e1d-4a40-9bc4-141ca52da785","keyword":"扩散速率","originalKeyword":"扩散速率"}],"language":"zh","publisherId":"gfzclkxygc201603014","title":"锯齿型(2,2)石墨炔-3纳米管的盐水分离性能","volume":"32","year":"2016"},{"abstractinfo":"研究了熔盐电解法制备CaB6的合成工艺,确定了制备CaB6粉末的合成温度、电解电压和电解时间.同时,对电解所生成的阴极产物的相组成、颗粒尺寸与形貌进行了表征.结果表明,CaCl2熔盐体系制备CaB6粉末的基本工艺条件是:Ar气环境保护,电解电压3.0 V,900℃电解30 h.所合成的CaB6晶体粉末粒径范围为2-8μm,颗粒形态规整,为规则的长方体.对电解过程中阴极进行循环伏安扫描分析,确定硼酸盐向阴极的扩散速率为控制电解过程的重要环节.","authors":[{"authorName":"王旭","id":"4ac62fa5-92e3-4a54-b003-9fddead509f8","originalAuthorName":"王旭"},{"authorName":"翟玉春","id":"38d272d8-6b83-43c8-8e1b-d9877eada09f","originalAuthorName":"翟玉春"},{"authorName":"谢宏伟","id":"89ae2d2c-d769-4910-9fd8-85a40c600efe","originalAuthorName":"谢宏伟"}],"doi":"10.3321/j.issn:0412-1961.2008.10.019","fpage":"1243","id":"b54b33d0-4beb-4335-82ed-90a9280a92f1","issue":"10","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"4f4b1fc0-144f-44da-9875-6a496fb4952c","keyword":"熔盐电解","originalKeyword":"熔盐电解"},{"id":"b6f8d4f0-1528-4b4d-bc2b-b684965fb692","keyword":"熔盐体系","originalKeyword":"熔盐体系"},{"id":"ed624b78-3498-4475-b7a6-951a22074b46","keyword":"CaB6","originalKeyword":"CaB6"},{"id":"5fc52772-64f3-4ecb-88f8-46a5dc733ffd","keyword":"扩散速率","originalKeyword":"扩散速率"},{"id":"a25c1c28-2762-43eb-bc9c-7544bea7b664","keyword":"循环伏安法","originalKeyword":"循环伏安法"}],"language":"zh","publisherId":"jsxb200810019","title":"熔盐电解法制备CaB6及其表征","volume":"44","year":"2008"},{"abstractinfo":"
采用真空感应炉制备316L-50Mn初始合金,然后通过真空环境下Mn升华去合金制备多孔不锈钢,应用SEM、EDS和XRD等对物理真空去合金工艺方法制备的多孔不锈钢进行分析,并研究去合金过程中温度以及时间对孔的形成、发展以及孔的形貌的影响。结果表明,物理真空去合金工艺可以制备多孔不锈钢,其孔隙率为30%~60%,孔径为0.5~3 μm,多孔层深度达到15~60 μm。真空热处理温度和时间是物理真空去合金制备方法的2个关键因素,处理温度主要通过影响Mn元素挥发和体扩散速率进而影响孔的形貌,而处理时间对多孔层的深度起到主要作用。
","authors":[{"authorName":"李俊","id":"d18b06d0-4b67-4902-9055-c6ea16c5376c","originalAuthorName":"李俊"},{"authorName":"刘文朋","id":"9495aac0-cf3b-4b66-8c97-d559c7d4d048","originalAuthorName":"刘文朋"},{"authorName":"任伊宾","id":"81d8e1b3-e3ee-4a86-935e-e65315953376","originalAuthorName":"任伊宾"},{"authorName":"沈明钢","id":"25c30d70-f87b-400f-8d72-be93971d4208","originalAuthorName":"沈明钢"},{"authorName":"杨柯","id":"2537936f-b203-40ab-9529-040eca92e290","originalAuthorName":"杨柯"}],"categoryName":"Orginal Article","doi":"10.11900/0412.1961.2016.00260","fpage":"524","id":"b427d9a3-426e-4d0d-bb51-918760fa53a9","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"3c6a6160-d1eb-4dd8-b984-0acb59dba470","keyword":"多孔不锈钢","originalKeyword":"多孔不锈钢"},{"id":"38ce2f54-ae7c-4d7e-b8ff-0f52ca0ca4ed","keyword":"物理真空去合金","originalKeyword":"物理真空去合金"},{"id":"646d01a0-3c0f-4316-994f-71a009981b56","keyword":"微米孔","originalKeyword":"微米孔"},{"id":"280a7423-220b-4b98-a8b3-4fc0706535ea","keyword":"Kirkendall效应","originalKeyword":"Kirkendall效应"},{"id":"bbff40ea-cd3a-4ebc-bba8-c560919955dc","keyword":"扩散速率","originalKeyword":"扩散速率"}],"language":"zh","publisherId":"C20160260","title":"物理真空去合金法制备微米级多孔不锈钢","volume":"53","year":"2017"},{"abstractinfo":"通过分段冷却实验,研究了冷却速度和等温温度对GCr15SiMn轴承钢中碳化物析出规律及C、Cr、Mn元素扩散规律的影响.结果表明:当冷却速度大于5℃/s,能够有效抑制网状碳化物出现;当珠光体相变温度在590 ~620℃时,既能抑制C、Cr、Mn元素向奥氏体晶界扩散,防止二次碳化物在珠光体相变过程中出现,又能形成良好的索氏体组织.当相变温度达到650℃时,二次碳化物可以在低于Arl的温度区间随着珠光体相变析出.通过对实验数据进行线性拟合,得出珠光体片层厚度和过冷度的经验公式为Sp-1=-3.81×10-3 +1.166×10-4△T.","authors":[{"authorName":"张丹","id":"4600cceb-1547-42b4-bdff-bb397a0589f3","originalAuthorName":"张丹"},{"authorName":"韩强","id":"b837d06f-efb6-423d-8978-b101fe191f15","originalAuthorName":"韩强"},{"authorName":"周乐育","id":"eccb7afd-51c0-4d9a-b5ec-a5de89336138","originalAuthorName":"周乐育"},{"authorName":"张朝磊","id":"27992001-4c24-406b-a4c0-958f990036ee","originalAuthorName":"张朝磊"},{"authorName":"刘雅政","id":"334fd13e-25eb-42e2-86e7-b35f41f75529","originalAuthorName":"刘雅政"}],"doi":"","fpage":"81","id":"bd341968-eba1-429c-9a21-6c790dcdec29","issue":"11","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"9bee928e-ac14-44d5-96c2-71bd59733314","keyword":"GCr15SiMn钢","originalKeyword":"GCr15SiMn钢"},{"id":"1cbeeecc-2f12-43cc-b694-9fd8765d8d8a","keyword":"网状碳化物","originalKeyword":"网状碳化物"},{"id":"ec9cd86e-24c9-4b65-b65d-b7b3bb90d351","keyword":"珠光体","originalKeyword":"珠光体"},{"id":"9934d662-661c-4ea3-ba74-b3c071b0651a","keyword":"扩散速率","originalKeyword":"扩散速率"}],"language":"zh","publisherId":"jsrclxb201411015","title":"GCr15SiMn钢等温过程中碳化物析出规律","volume":"35","year":"2014"},{"abstractinfo":"采用水银法测定了3种焊条的熔敷金属在一定温度下的氢逸出曲线,由氢逸出曲线计算得到扩散氢逸出速率随剩余扩散氢浓度的变化关系,基于这一关系建立了以剩余扩散氢浓度为自变量的扩散氢逸出速率数学模型vH=k·CHα,该模型能够较好地表征vH与CH的相关性.","authors":[{"authorName":"薛钢","id":"6e1be5c4-8c58-4d27-b736-e0c8aaff4272","originalAuthorName":"薛钢"},{"authorName":"王涛","id":"785fe7f4-f8a5-4b4e-8935-c64842b7db47","originalAuthorName":"王涛"},{"authorName":"杨欢","id":"93889efa-7bd2-464e-9f52-1de7fdc726a7","originalAuthorName":"杨欢"}],"doi":"","fpage":"1","id":"e9563ab6-c7c1-4eba-b359-2c9ea0200852","issue":"2","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"0841108f-1b03-4678-aa56-d6e20923346a","keyword":"剩余扩散氢浓度","originalKeyword":"剩余扩散氢浓度"},{"id":"f59190a2-eb9b-468f-8ebe-6354ccfbe0dd","keyword":"扩散氢逸出速率","originalKeyword":"扩散氢逸出速率"},{"id":"5a0939d4-1e2d-4c20-a52b-6f55565fc227","keyword":"数学模型","originalKeyword":"数学模型"}],"language":"zh","publisherId":"clkfyyy201502001","title":"以剩余扩散氢浓度为自变量的扩散氢逸出速率数学模型","volume":"30","year":"2015"},{"abstractinfo":"利用水银法与热提取法试验测定了590 MPa级高强度焊条在不同温度下的扩散氢逸出速率,建立了与温度相关的扩散氢逸出速率表达式,并验证了该表达式的有效性.结果表明,该表达式可以较为准确地计算出焊缝金属冷却过程中的瞬态扩散氢浓度.","authors":[{"authorName":"杨欢","id":"2b72b979-3a0d-4e58-bac5-2ce952db79b1","originalAuthorName":"杨欢"},{"authorName":"王涛","id":"2b46f763-69de-444b-ba59-5765fd834d77","originalAuthorName":"王涛"},{"authorName":"薛钢","id":"33ff7e7d-9636-4158-b4de-fb57c1df3df2","originalAuthorName":"薛钢"},{"authorName":"刘健","id":"f6139d4c-02f7-426f-8dd3-e0225284a817","originalAuthorName":"刘健"}],"doi":"","fpage":"4","id":"596127b4-6972-48f1-8472-4441d987c5b4","issue":"2","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"2800de6e-e4ab-42ca-8f5f-2c2ac64aeedc","keyword":"高强度焊条","originalKeyword":"高强度焊条"},{"id":"b592e581-25e9-4a31-a889-8286d7b6cde8","keyword":"扩散氢","originalKeyword":"扩散氢"},{"id":"8842065a-60c5-406b-89ea-9d7a01761d2c","keyword":"逸出速率表达式","originalKeyword":"逸出速率表达式"}],"language":"zh","publisherId":"clkfyyy201502002","title":"590 MPa级高强度焊条扩散氢逸出速率表达式","volume":"30","year":"2015"}],"totalpage":1991,"totalrecord":19909}