{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"基于显式非线性有限元数值仿真分析方法,建立不同构型等壁厚加筋正六角铝蜂窝的全尺度精细离散模型,对比不同形式加筋蜂窝低速10m/s异面加载时力学特性的变化,评估出双筋加筋形式强于单筋形式,双厚强于单厚的加筋构型.研究加筋板厚度与蜂窝胞元壁厚间的匹配效应,通过改变筋板厚度,分析加筋板厚对蜂窝整体屈曲模式的影响,并采用等效表观密度特征因子评价加筋蜂窝的屈曲模式改变对整体力学特性影响的贡献度,发现筋胞匹配间存在明显的“分离点”,当所加筋板小于一定厚度时,加筋蜂窝的平台区平齐、完整,但随厚度增加,其响应特性突变,平台区波动剧增,超出此厚度比例构造的加筋型蜂窝其功用将受到影响;1.5倍胞壁厚加筋的蜂窝力学性能稳定,平台强度提升显著,是最优的筋厚选择方案.","authors":[{"authorName":"王中钢","id":"793a3546-cc79-438a-8b1a-75016df2e625","originalAuthorName":"王中钢"},{"authorName":"姚松","id":"3fc21a59-7be2-4121-8196-7b5ed5d2446e","originalAuthorName":"姚松"}],"doi":"10.3969/j.issn.1005-5053.2013.3.016","fpage":"86","id":"4e32b11a-6bdb-48fd-b7b9-497e746630f4","issue":"3","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"366d5c2e-429d-4c76-ba72-82751de7227d","keyword":"铝蜂窝","originalKeyword":"铝蜂窝"},{"id":"0c124e1e-ba23-43e2-82bf-f1240d01e0cf","keyword":"加筋","originalKeyword":"加筋"},{"id":"443e9222-fa04-4a9f-aec8-415d9f21e26e","keyword":"力学特性","originalKeyword":"力学特性"},{"id":"4f5b6123-a1fc-45b3-8328-f727b2987a63","keyword":"匹配效应","originalKeyword":"匹配效应"}],"language":"zh","publisherId":"hkclxb201303016","title":"加筋正六角铝蜂窝异面力学特性与筋胞厚度匹配优化","volume":"33","year":"2013"},{"abstractinfo":"采用试验和有限元方法研究了带口盖加筋复合材料壁板的剪切性能.在带口盖加筋复合材料壁板有限元模型的基础上,去掉口盖,对不带口盖的大开口加筋复合材料壁板进行了有限元模拟分析,以此研究口盖对带口盖加筋复合材料壁板的影响.试验和数值计算结果表明:当达到屈曲载荷时,带口盖加筋复合材料壁板各个区域同步发生屈曲,最终破坏位置位于加强筋条以外的复合材料壁板区域;去掉口盖后,结构的刚度以及承载能力降低,结构的应力集中点以及损伤起始位置均发生变化,破坏时失稳形式无明显变化,均为局部失稳.","authors":[{"authorName":"郭俊","id":"7c69ba13-4999-4b0e-87d3-0bd8b143fd05","originalAuthorName":"郭俊"},{"authorName":"关志东","id":"ff318169-be82-42d1-87e5-b21f0a9b02a3","originalAuthorName":"关志东"},{"authorName":"黎增山","id":"8c207f2e-5965-4444-bd3b-1db7ee4e2d26","originalAuthorName":"黎增山"},{"authorName":"卓越","id":"166f833c-d594-4b07-9470-e2a4e3fc7475","originalAuthorName":"卓越"}],"doi":"10.13801/j.cnki.fhclxb.20150624.001","fpage":"399","id":"05d1f5df-b322-4224-8b54-d2730ddfd861","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"8ed25cff-65c9-4ed6-b108-9d17d4aa864f","keyword":"口盖","originalKeyword":"口盖"},{"id":"cb69a83c-f656-4bfc-b0a8-c35962421b9e","keyword":"加筋","originalKeyword":"加筋"},{"id":"645a09f3-935d-4b49-9902-ed691849a01d","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"3900532f-9c22-4422-8a3a-11c23c5cf002","keyword":"剪切试验","originalKeyword":"剪切试验"},{"id":"05e97e7e-e8a7-4e04-9ea8-21ac1d678236","keyword":"有限元分析","originalKeyword":"有限元分析"}],"language":"zh","publisherId":"fhclxb201602024","title":"带口盖加筋复合材料壁板剪切性能","volume":"33","year":"2016"},{"abstractinfo":"本文根据复合材料加筋壳的材料特性,获得了环肋、纵筋、斜筋和三角形网格加筋壳的广义刚度系数,从而将圆柱壳与加筋壳的稳定性问题统一起来。并利用Donell壳体理论,推导了在外压作用下,复合材料加筋圆柱壳总体失稳的临界压力公式。可供有关工程设计师参考。","authors":[{"authorName":"蒋鞠慧","id":"96b5e742-d52e-4e65-b4a0-fa058f8894a3","originalAuthorName":"蒋鞠慧"}],"doi":"10.3969/j.issn.1003-0999.2001.02.002","fpage":"5","id":"8701acb3-9812-41b4-a693-b36c196a7ef1","issue":"2","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"319248d2-2d5a-43ab-b39f-969afa226c4e","keyword":"复合材料加筋圆柱壳广义刚度法稳定性","originalKeyword":"复合材料加筋圆柱壳广义刚度法稳定性"}],"language":"zh","publisherId":"blgfhcl200102002","title":"复合材料加筋壳稳定性研究","volume":"1","year":"2001"},{"abstractinfo":"通过对飞机上大量使用的复合材料加筋壁板进行剪切试验,得到了不同筋条间距和腹板高度下加筋壁板的屈曲载荷和破坏载荷,分析了筋条间距和腹板高度对加筋壁板剪切承载能力的影响.结果表明:随着筋条间距增大,加筋壁板由局部屈曲变为整体屈曲,屈曲载荷和破坏载荷均逐渐减小;随着腹板高度增大,加筋壁板的屈曲载荷和破坏载荷均增大,当腹板高度达到35 mm时则基本不再变化,分别保持在425 kN和775 kN左右.","authors":[{"authorName":"何吕龙","id":"669f152e-2cbb-4aeb-8fee-2b09ef23fc3d","originalAuthorName":"何吕龙"},{"authorName":"尚柏林","id":"f157823e-9072-4707-a38a-e883bdd1ac5a","originalAuthorName":"尚柏林"},{"authorName":"常飞","id":"e08ade69-6405-4dfa-85fc-acf9cc25346d","originalAuthorName":"常飞"},{"authorName":"张亚豪","id":"ecbe36b0-17e4-40d1-8114-ec99e9f258b5","originalAuthorName":"张亚豪"}],"doi":"10.11973/jxgccl201509011","fpage":"49","id":"ee3426a8-46b5-4ac3-ac7d-f74b4110276e","issue":"9","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"11392c36-1c59-42fd-90f5-fcba56ae32ef","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"74bdff90-edb9-44af-9389-639d680b94d1","keyword":"加筋壁板","originalKeyword":"加筋壁板"},{"id":"4e367849-d62a-43d8-a331-68d889b15c22","keyword":"剪切载荷","originalKeyword":"剪切载荷"},{"id":"7083bafa-f237-482d-a85d-6004c6e23de0","keyword":"屈曲载荷","originalKeyword":"屈曲载荷"},{"id":"11924830-0982-45b0-995e-7b3f2bca693b","keyword":"破坏载荷","originalKeyword":"破坏载荷"}],"language":"zh","publisherId":"jxgccl201509011","title":"筋条参数对复合材料加筋壁板剪切承载能力的影响","volume":"39","year":"2015"},{"abstractinfo":"对于复合材料加筋壁板稳定性优化问题,由于涉及多个设计变量:筋条数目、筋条间距、筋条高度、筋条的铺层参数、面板的铺层参数等,本文采用具有多参数级联编码方式的遗传算法时基于稳定性设计要求的加筋壁板进行了优化.对复合材料T型加筋壁板结构重量优化的算例,验证了本文所用方法的有效性.","authors":[{"authorName":"穆朋刚","id":"ceb19168-b4e2-4d17-90fe-381541d1db12","originalAuthorName":"穆朋刚"},{"authorName":"万小朋","id":"fa7d342c-55de-4340-a8cc-17d7ffc2a35b","originalAuthorName":"万小朋"},{"authorName":"赵美英","id":"85c9f5f8-7c2d-4281-bed1-6ea291d68075","originalAuthorName":"赵美英"}],"doi":"","fpage":"57","id":"8a01efce-e061-4dd0-a67b-0bcdbba34cef","issue":"5","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"09028d0e-d72a-410e-9dd2-15027d8c7962","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"d15076dc-a1a7-4dda-878b-2a280be9e7f4","keyword":"加筋壁板","originalKeyword":"加筋壁板"},{"id":"ad9907e5-75bc-47c7-9193-2da9b9db10c8","keyword":"遗传算法","originalKeyword":"遗传算法"},{"id":"9bd026cd-3798-4f72-8ea8-f313af6135d7","keyword":"优化设计","originalKeyword":"优化设计"}],"language":"zh","publisherId":"blgfhcl200905014","title":"复合材料加筋壁板优化设计","volume":"","year":"2009"},{"abstractinfo":"通过对复合材料加筋板进行轴向压缩实验和非线性有限元模拟,研究了其后屈曲阶段的损伤和破坏行为.加筋板在实验中被压缩至完全破坏,压溃的加筋板表现出复杂的后屈曲损伤,包括筋条脱粘、纤维断裂、分层、基体开裂等损伤模式.有限元模型中引入了Hashin准则和基于二次应力的胶层失效准则,失稳及破坏载荷的预测结果和实验值吻合较好.分析表明:胶结界面对复合材料加筋板的后屈曲性能有重要影响;局部失稳后蒙皮承载能力变弱,筋条承受主要载荷,蒙皮、筋条刚度分配应该是结构屈曲和后屈曲设计时重点考虑的问题.","authors":[{"authorName":"高晶晶","id":"cf0c0cdc-430d-472e-a457-b7197c51edcc","originalAuthorName":"高晶晶"},{"authorName":"关志东","id":"bf859a82-1bcf-4389-89a8-a2208d4d39cd","originalAuthorName":"关志东"},{"authorName":"刘德博","id":"70cd09c6-42a8-416c-b95a-d28f0d41acf5","originalAuthorName":"刘德博"},{"authorName":"孙彦鹏","id":"e80b55dc-7c82-4f38-a7f6-42beb92b135d","originalAuthorName":"孙彦鹏"}],"doi":"10.3969/j.issn.1001-4381.2011.z1.031","fpage":"126","id":"2a95d537-8b7c-48d9-a7ae-c25e668a38b8","issue":"z1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"d933619c-931a-4fb7-b1a4-dc13f73457d9","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"e877539b-2cf3-445c-b663-bc913f8cae5f","keyword":"压缩实验","originalKeyword":"压缩实验"},{"id":"9a4201ff-7c46-422d-802a-b91f539ae39b","keyword":"后屈曲","originalKeyword":"后屈曲"},{"id":"7170a11f-ed96-4bd4-82d7-a0db2b9bee0a","keyword":"有限元分析","originalKeyword":"有限元分析"},{"id":"42bf56dc-b446-4093-8a2b-15502b5e496f","keyword":"加筋板","originalKeyword":"加筋板"}],"language":"zh","publisherId":"clgc2011z1031","title":"复合材料加筋板后屈曲特性研究","volume":"","year":"2011"},{"abstractinfo":"为确定某型飞机平尾壁板结构截面尺寸参数,验证计算分析方法是否合理、有效,通过有限元屈曲分析与试验相结合的手段,对复合材料加筋壁板轴压稳定性进行研究。研究了复合材料加筋壁板在相同支持条件下,提高加筋壁板筋条截面积占总截面积的比例对复合材料加筋壁板初始屈曲和承载能力的影响。试验结果表明:试验结果与计算结果较为接近,说明计算中采用的分析方法和分析模型准确有效;在筋条截面积比例提高3.0%的情况下,屈曲载荷提高10.0%左右。所得结论可指导复合材料加筋壁板设计在型号研制中的应用,为初步确定平尾壁板结构截面形式和尺寸提供参考。","authors":[{"authorName":"金迪","id":"8bd64677-0fb5-4eb4-92f7-0c683515029a","originalAuthorName":"金迪"},{"authorName":"寇艳荣","id":"8013e7ec-eca3-4677-bcf0-73abd54ee712","originalAuthorName":"寇艳荣"}],"doi":"10.13801/j.cnki.fhclxb.20151225.002","fpage":"1142","id":"efb4bdd5-8d9e-4814-977a-cc31e3fd78d2","issue":"5","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"32537073-d9c9-4335-868b-287327ac03ac","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"43ac396e-ae2f-4257-81b2-2cdca018f000","keyword":"加筋壁板","originalKeyword":"加筋壁板"},{"id":"c2914f00-b801-498e-a224-2cca12f5d655","keyword":"轴压","originalKeyword":"轴压"},{"id":"5d1c19e7-1579-46b0-98ce-b39166e1c91f","keyword":"筋条截面积比例","originalKeyword":"筋条截面积比例"},{"id":"2aec67d0-f018-48a8-984a-72708e5d95b5","keyword":"屈曲载荷","originalKeyword":"屈曲载荷"}],"language":"zh","publisherId":"fhclxb201605025","title":"复合材料加筋壁板结构选型设计","volume":"33","year":"2016"},{"abstractinfo":"基于复合材料一维剪切理论--Mindlin理论,给出了材料性质与温度有关的含分层损伤复合材料加筋和无加筋层合板的线性和非线性热-机械力耦合情况下的屈曲问题有限元分析方法,并研究了含分层损伤的加筋和无加筋层合板的两种不同类型的热-机械力屈曲问题.通过典型算例分析,讨论了热-机械力耦合效应和分层大小对含分层损伤结构的屈曲性态的影响关系.","authors":[{"authorName":"陈浩然","id":"27773c80-ed47-48df-8037-c298bfa3f0d4","originalAuthorName":"陈浩然"},{"authorName":"尹向勇","id":"94143382-83f0-42c0-a8ca-2db6593f1859","originalAuthorName":"尹向勇"},{"authorName":"刘相斌","id":"961830bb-a01c-4563-9bbc-3ed056c137b6","originalAuthorName":"刘相斌"}],"doi":"10.3321/j.issn:1000-3851.2000.02.016","fpage":"70","id":"273c3d9f-3f79-4fdd-80e7-0b37ce2e8ac5","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"df38b2a1-4930-483c-b290-34b28dc738db","keyword":"热-机械力耦合","originalKeyword":"热-机械力耦合"},{"id":"b0b18b20-4502-4b7d-88a5-37d2a61ae0dc","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"97ae5c06-85ab-4e51-b270-e24fbc76770e","keyword":"加筋、无加筋层合板","originalKeyword":"加筋、无加筋层合板"},{"id":"d27cfc14-d339-4537-850c-cee329e143b7","keyword":"分层损伤","originalKeyword":"分层损伤"},{"id":"1471fdaf-374d-4ae3-9e9f-0c5dada744c4","keyword":"线性和非线性热屈曲性态","originalKeyword":"线性和非线性热屈曲性态"}],"language":"zh","publisherId":"fhclxb200002016","title":"具有分层损伤复合材料加筋与无加筋层合板热-机械力屈曲性态","volume":"17","year":"2000"},{"abstractinfo":"针对几种结构形式不同的加筋靶板受球头及截卵两种弹头形式的高速动能弹丸穿透时的冲击特性.开展一系列的实验研究.根据实验结果,讨论靶板变形破损模式、弹丸速度及姿态的变化规律等.在此基础上,总结针对钝头弹丸,预测加筋靶板极限穿透速度的经验公式,以指导结构抗穿透防护设计.","authors":[{"authorName":"谌勇","id":"ab3c1ff8-4365-4cf9-9395-9165108e37af","originalAuthorName":"谌勇"},{"authorName":"汪玉","id":"f211bc5d-30da-4334-8c25-4614204f6b4a","originalAuthorName":"汪玉"},{"authorName":"唐平","id":"dbc14f51-6dcb-469c-857f-b4ea82ce1625","originalAuthorName":"唐平"},{"authorName":"杨世全","id":"42a62f22-043b-40d1-9f9c-79d700f85b52","originalAuthorName":"杨世全"},{"authorName":"华宏星","id":"b6366970-a992-4bed-8823-738409b61e74","originalAuthorName":"华宏星"}],"doi":"10.3969/j.issn.1004-244X.2008.03.005","fpage":"15","id":"74541d37-2fb8-4a26-8132-f5f53f4257d7","issue":"3","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"405a8833-1ad4-47aa-aa6c-192f52e165b1","keyword":"加筋靶板","originalKeyword":"加筋靶板"},{"id":"228af124-a656-4364-8fef-90002160f990","keyword":"穿透","originalKeyword":"穿透"},{"id":"9cbe55e8-85d3-49f5-9987-cbfa04353448","keyword":"实验研究","originalKeyword":"实验研究"},{"id":"f739b93e-d019-4d5b-abef-318e50484f5f","keyword":"经验公式","originalKeyword":"经验公式"}],"language":"zh","publisherId":"bqclkxygc200803005","title":"加筋靶板抗穿透特性的实验研究","volume":"31","year":"2008"},{"abstractinfo":"以加筋复合材料圆筒结构为对象,研究了复合材料结构的外部低速撞击识别问题.采用压电传感器获取发生低速撞击时在结构内产生的应力波信号.针对加筋复合材料结构的撞击位置识别,特别是监测区域边缘的位置识别问题,提出了基于传感器信号功率的两步法来估计撞击位置;撞击载荷的重构采用系统辨识方法,通过分析系统辨识方法中传递函数的模型阶次和相关性系数的关系,提出了模型阶次选择的原则以进一步完善该方法.结果表明:所提出的两步定位法可较好地估计所有监测区域的撞击位置,所改进的系统辨识方法可较好地识别非加筋区域上的撞击位置和撞击载荷时间历程;当撞击点为加筋区域时,由于筋条对应力波传播的复杂影响导致撞击识别误差偏大.","authors":[{"authorName":"许龙涛","id":"0d0f708e-1673-4673-ac7a-b0188064b565","originalAuthorName":"许龙涛"},{"authorName":"王奕首","id":"7a9ba7a6-4426-4a16-9842-2beb66a1d615","originalAuthorName":"王奕首"},{"authorName":"武湛君","id":"c0a81855-aa23-4e4b-85f0-d80c1b9a1dcf","originalAuthorName":"武湛君"},{"authorName":"马书义","id":"30605922-c76f-4f6b-aa20-8fb14b50defe","originalAuthorName":"马书义"}],"doi":"","fpage":"218","id":"ae4607d0-d618-46ea-a6b2-78c9831b6c22","issue":"5","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"94e0e138-5ac5-43a5-bd53-6f6b75997a1f","keyword":"加筋复合材料","originalKeyword":"加筋复合材料"},{"id":"b84059c9-14b9-48d0-8778-c57c544f76e2","keyword":"圆筒结构","originalKeyword":"圆筒结构"},{"id":"eff52f87-e7cd-4007-bd2b-dab6c2e4b697","keyword":"撞击识别","originalKeyword":"撞击识别"},{"id":"76100c69-c3c9-4619-b168-57cbc7fd553c","keyword":"系统辨识","originalKeyword":"系统辨识"},{"id":"b3e63d14-9ddb-429a-9258-56599cb0d47b","keyword":"位置估计","originalKeyword":"位置估计"},{"id":"347fe17c-3927-4bd3-b05c-9da2da1a4c9c","keyword":"模型阶次","originalKeyword":"模型阶次"}],"language":"zh","publisherId":"fhclxb201305033","title":"加筋复合材料圆筒结构的撞击识别","volume":"30","year":"2013"}],"totalpage":416,"totalrecord":4158}